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ABSTRACT

Deep learning based object detection algorithms evolve rapidly. The application of these object
detection models for detecting Graphical User Interface (GUI) elements on screenshots might
provide a powerful alternative to the error-prone automated analysis of technology-dependend
interfaces such as the Document Object Model (DOM). However, the implementation of state-of-
the-art object detection models for this task suffers from the lack of sufficient training data which
is difficult and costly to annotate.

In this thesis, an object detection model is pre-trained on a huge web page screenshot data set
that contains automatically obtained, but erroneous labels. After that, it is trained on a manually
refined and considerably smaller high-quality data set. It is shown that this combination of Weak
Supervision and Transfer Learning leads to a significant improvement of the prediction performance
compared to naive training on high-quality data. This effectively reduces the amount of manually
annotated data needed in order to reach a certain level of prediction quality.
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1 INTRODUCTION

Detecting elements of Graphical User Interfaces (GUIs) is a prerequisite for many software en-
gineering tasks or techniques such as software testing or automated interaction with GUIs. Tra-
ditionally, detecting these elements involved accessing the source code or dedicated debugging
interfaces that provide rendering information. For example, test automation aims to detect un-
wanted changes such as Buttons, Textfields or Images that are not functional anymore after the
latest code changes. To detect such defects, automated test scripts for web pages may evaluate
the Document Object Model (DOM) in order to find these elements and interact with them to test
their functionality.

However, evaluating interfaces such as the DOM of web pages may give incorrect information
about the occurrence of element types. Additionally, this approach strongly depends on the UI
technology and availability of such an interface. Furthermore, User Interface Technologies evolve
rapidly. Debugging interfaces can become obsolete quickly as well if not updated consistently.
For other applications such as native software, there might be no DOM available, so the imple-
mentation of automated interaction has to rely on entirely different debugging interfaces.

Therefore, detecting GUI elements based solely on their visual properties provided by a screen-
shot using computer vision and object detection algorithms can provide an option that is not tied
to the platform or UI technology. This can further be utilized in order to perform for example
cross-platform application testing [1], automated device interaction without debugging access or
GUI code synthesis based on a mocking screenshot [2, 3]. For some use cases, no debugging
interface such as the DOM may be accessible at all.

Deep learning based object detection models such as R-CNN [4, 5, 6] or YOLO [7, 8, 9] provide
state-of-the-art performance on challenging object detection data sets such as COCO [10, u3],
which consists of over 200,000 labeled images. To achieve a similar prediction quality for detect-
ing GUI elements on screenshots, a sufficient amount of labeled data is needed in order to train
and evaluate these algorithms.

To approach this problem, White at al. [11] trained an object detection model on synthetic data that
consists of randomly generated GUIs. However, the performance of models trained on synthetic
data is limited as it is hard to generate synthetic GUIs that sufficiently reflect the properties of
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Chapter 1 Introduction

real-world software designed by humans. The ReDraw [12] and Rico [13] data sets include mined
GUI information of mobile apps. Annotations obtained through automatic methods may not
always reflect the actual visual properties of an element. Additionally, desktop GUIs are often
more complex than mobile GUIs as they utilize the larger screen size and more precise mouse
input, which often results in a higher density of elements.

This work evaluates another approach. The focus of this work is the detection of elements that
frequently occur as part of different types of desktop web pages. For that, the YOLOv3-SPP object
detection model is used to train an end-to-end object detection pipeline for the detection of GUI
elements on web page screenshots.

A huge data set of web pages has been collected and labeled automatically through web crawling
and DOM analysis prior to this work. As labels provided by automated DOM analysis may be
erroneous and noisy, a portion of this data set has been manually refined to provide the training
data. An object detection model is pre-trained on the huge crawled and partly incorrect labeled
data set (Weak Supervision) and then trained on the manually refined samples afterwards (Transfer
Learning).

In order to evaluate whether this combination is suitable, three main unknown factors have to be
taken into consideration.

First, how to efficiently design a manual refined data set. The manual annotation should follow
dedicated principles that aim to normalize the annotation, correct errors and handle edge cases.
To fully utilize object detection performance and avoid model confusion, these principles should
base solely on visible properties of the elements, implicitly cover a wide range of GUI type func-
tionality and account for the similarity of certain elements.

Second, the influence of noisy classification on the overall model performance. The data used for
pre-training is obtained automatically. As web pages may utilize non-standard implementations
as well as a variety of different frameworks and web technologies, automatic analysis of elements
is error-prone. In the implemented analysis this work bases on, the element type of many ele-
ments is unclear, which might harm the overall performance. Additionally, some elements may
be missclassified or not found at all. It has to be analyzed if the inclusion of this class informa-
tion during the pre-training might confuse the model and therefore worsen the prediction quality
compared to pre-training without class information.

Finally, the overall influence of the pre-training on the prediction quality. It has to be observed if
this dedicated pre-training, considering its limitations, improves the results compared to a naive
baseline as well as pre-training on a generic object detection data set.

In order to explain the object detection techniques and the metrics used for evaluation, Chapter
2 introduces the theoretical foundations of this work. Chapter 3 explores the data acquisition
methods and pipeline for all involved data sets as well as the the manual refinement process.
Chapter 4 provides information about the experimentation environment and its implementation.
Chapter 5 introduces the individual experiments. Chapter 6 contains an overarching discussion of
these results and the limitations of the approaches used in this work. Finally, Chapter 7 includes
a brief reference to related work, sets this work in contrast and provides an outlook for future
work.
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2 THEORETICAL FOUNDATIONS

The purpose of this chapter is to introduce theoretical concepts, which is complemented by the
Glossary in Appendix A. While the Glossary serves as a reference to more general Machine Learn-
ing terminology, the focus of this chapter is to introduce specific methods and metrics used in this
thesis.

This chapter begins with the definition of the GUI element detection task in Section 2.1. After that,
different machine learning paradigms are discussed in order to introduce Weak Supervision and
Transfer Learning in Section 2.2. As this work aims to apply both paradigms for the task of GUI
element detection, it is also discussed why the combination of both is suitable. To evaluate the
implemented techniques based on these methods, dedicated evaluation metrics are discussed in
Section 2.3. Finally, Section 2.4 introduces a brief overview about the YOLO object detector family.
The YOLOv3-SPP [9, 14] architecture is used for evaluation as it is suitable for real-time prediction
while maintaining an adequate trade-off between speed and accuracy. It also allows end-to-end
training and multi-label prediction where each predicted object can have multiple classes assigned.

2.1 GUI ELEMENT DETECTION

The task of detecting object instances of specific classes in images is called Object Detection in
computer vision. Detected elements consist of the corresponding class prediction as well as the
bounding box. Each bounding box is a 4-tuple depicting a rectangle enclosing the object (Figure
2.1). Therefore, it includes information about position and size. Common annotation formats to
denote bounding boxes are (x1, y1, x2, y2) or (x, y, width, height). The former consists of just the
edge positions, the latter denotes the upper left point coordinate as well as the width and height
of the rectangle. In all cases, remaining information can be calculated by the provided annotation.

13



Chapter 2 Theoretical Foundations

Figure 2.1: Object Detection aims to detect bounding boxes of object instances in images.

GUIs of arbitrary size and complexity are composed of elements like Buttons or Textfields. These
elements are the fundamental building blocks. The GUI element detection task aims to detect
these elements as well as their respective position and size, by relying solely on visual infor-
mation provided by a screenshot of the rendered GUI. Therefore, detecting GUI elements is the
application of object detection on GUI screenshots.

The focus of this work is the detection of elements that frequently occur as part of different types
of web pages. Some element types are used more frequently in certain categories of GUIs, which
are not covered by this work. However, the methods introduced in the following sections may be
extended with reference to new element types in future work. This is discussed in Section 6.2.4
and Section 6.2.5.

State-of-the-art object detection algorithms often utilize deep neural networks for object detec-
tion tasks. They can be implemented using different machine learning approaches or techniques,
which is introduced within the next section.

2.2 MACHINE LEARNING PARADIGMS

Depending on which type of labels are available for training and prediction, different paradigms
can be applied.

In Supervised Learning, input data x as well as corresponding ground truth labels y are present.
Tasks where labels are continuous values are named regression tasks. If labels consist of discrete
values, this is called classification. Examples for supervised classification range from recognizing
handwritten digits using the well-known MNIST[15] data set to classifying brain tumors [16] or
noise for hearing aids [17]. In most cases, object detection is also implemented using supervised
learning methods.

If a training algorithm operates on input data x without ground truth labels, this is called Unsu-
pervised Learning. The objective is to find structures, similar groups or rules which are valid for
the majority of the data. A simple example is the extraction of dominant colors or color palettes
from images using k-means clustering [u1] or the calculation of YOLO anchor boxes which is
introduced in Section 2.4.

14



2.2 Machine Learning Paradigms

However, the lack of labeled training data is a huge problem for many supervised learning prob-
lems. Due to this reason, there are paradigms and techniques that aim to reduce the amount of
high-quality labels needed (Figure 2.2):

Figure 2.2: This figure summerizes different paradigms that can be applied to reduce the need for manually
annotated data. Weak Supervision and Transfer Learning are implemented and evaluated for the
detection of GUI elements in this work. Image Source: [u2]

• Semi-supervised Learning is a mixture of supervised and unsupervised learning tech-
niques. In this case, only a portion of the data has been labeled. Unlabeled data can still
be utilized in order to improve the model performance.

• Active Learning aims to estimate which data has the greatest value for the model to learn
from. Therefore, the data which is annotated next is actively selected.

• Transfer Learning utilizes models pre-trained on another data set or task, which can signif-
icantly vary from the target data.

• Weak Supervision leverages low-quality labels which can sometimes be obtained easily.
This can be used in combination with Transfer Learning.

Within this work, the combination of Transfer Learning and Weak Supervision has been imple-
mented for the task of GUI element detection.

For this, an object detection model has been trained on a huge, but noisy data set using Weak
Supervision. Afterwards, the pre-trained model has been utilized to continue training on a data set
containing high-quality labels using Transfer Learning. Both paradigms are discussed seperately
within the following Sections.

2.2.1 Weak Supervision

Obtaining a suitable amount of labeled training data can be costly. That hinders state-of-the-
art supervised learning methods from being used for many real-world problems. Object detec-
tion research often aims at increasing an evaluation score at a given, well-known data set like
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Chapter 2 Theoretical Foundations

COCO [u3], which consists of over 200,000 labeled images. Building data sets to achieve similar
results for other tasks can take huge efforts and human labeling.

However, there are use cases where inexactly or incompletely labeled data can be obtained easily.
Leveraging these noisy, but often huge data sets is called Weak Supervision [u2].

There are three common types of Weak Supervision problems [18]. In Incomplete Supervision, rel-
evant elements are not always labeled. Inexact Supervision is applied if only coarse-grained la-
bels are available, for example per-image labels instead of per-object labels in an object detection
task [19]. Finally, in Inaccurate Supervision, some labels may be wrong and not depict the real
ground truth.

For the task of detecting GUI elements on screenshots, huge amounts of data can be easily ob-
tained fully automatically by web crawling. Labels can be extracted by analyzing the Document
Object Model (DOM) on-the-fly. This process and its limitations are discussed in Chapter 3. This
approach is limited to applications where a DOM is accessible and the analysis is error-prone due
to modern dynamic web frameworks and the variety of different implementations. Due to this
reason, some labels may be incorrect or noisy and some elements may not be labeled at all. There-
fore, learning from this type of data set is both Incomplete Supervision and Inaccurate Supervision.

Despite these limitations, training on this data can generalize a model that only needs a Screen-
shot, similar to how a human would perceive a GUI. As shown in this work, naive training on
noisy data is quite limited when done seperately due to the reasons mentioned. However, it can
have a significant impact on overall prediction quality if combined with transfer learning, which
is discussed in the next section.

2.2.2 Transfer Learning

The first layers of neural networks often learn similar features even if the data sets or tasks are
different. For example, it has been shown that the first layers of Convolutional Neural Networks
often learn basic filters which are relatively independent of the specific data set [20]. This does
not only take place when training using different data sets for the same task. It also occurs when
considering different tasks like object detection or segmentation.

This phenomenon can be exploited for using features learned on a task using data set Dsource to
improve the results of a training for another task using data set Dtarget. This method is called
Transfer Learning and has been widely adopted in the literature due to its versality [21][22].

Using Transfer Learning, it is possible to pre-train an object detection model on large-scale data
set like COCO [u3]. After this, the already learned low-level features can be exploited in order to
continue training on Dtarget. This has several advantages. Many weights will not receive major
updates during the following training as important features have been learned before any sample
of Dtarget has been processed. Therefore, it can greatly improve the actual learning effectiveness
on Dtarget. That implies:

• It can greatly reduce the amount of training data needed in Dtarget in order to achieve a
certain prediction quality and lead to faster convergence.
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2.3 Object Detection Metrics

• Using the same amount of training data in Dtarget, prediction performance may be improved
significantly

• Layers of the network can be frozen during the training on Dtarget. Freezing layers indicates
that they will no longer be optimized during the training. Even though this can slightly
reduce the final prediction quality, this can significantly reduce the computational power
needed in that step.

Intuitively, the more distinct the tasks Dsource and Dtarget are, the less effective the usage of transfer
learning becomes.

Two variants of transfer learning are considered for the GUI element detection task. First, the
usage of weights pre-trained on common object detection data sets. Second, the usage of weights
pre-trained on a large amount of automatically annotated, but noisy GUI data, which can be
achieved using Weak Supervision as introduced in the previous section.

It can be assumed that the difference between Dsource and Dtarget is significantly smaller using the
second option. However, since the implementation is not exclusive and both approaches can be
stacked, a combination of both variants is examined as well. The details of the implementation
used in this work is introduced in Section 4.3.

2.3 OBJECT DETECTION METRICS

Selecting proper metrics is crucial when evaluating the performance of any machine learning
model, as it is the main indicator on how well a model performs. The performance of multiple
models is directly compared using selected metrics.

The usage of common object detection metrics and their limitations are discussed in this sec-
tion. Based on the Intersection over Union, the basic machine learning metrics True Positives, False
Positives and False Negatives are defined in the context of object detection. After that, these ba-
sic metrics are utilized in order to derive the more sophisticated metrics Precision, Recall and
AveragePrecision.
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Chapter 2 Theoretical Foundations

2.3.1 Intersection over Union

Also known as Jaccard Index, the Intersection over Uniun (IoU) is a statistic for measuring the
similarity of two sets. It is used as metric for measuring the quality of bounding box regression
in object detection tasks. For two sets A and B, it is calculated by

IoU(A, B) =
A ∩ B
A ∪ B

The IoU of two bounding boxes can be calculated by dividing the overlapping area by the united
area of both rectangles. This is visualized in Figure 2.3.

Figure 2.3: Bounding Boxes IoU. Source: [img1]

2.3.2 IoU and Confidence Thesholds

In contrast to classification, where a prediction only consists of the respective class, a prediction
from an object detection algorithm consists of both bounding box and class predictions. More
specifically, any object prediction A consists of bounding box prediction Abb, a class prediction
Aclass and an optional confidence value Acon f . The latter depicts how sure the algorithm is that
the predicted location and object class are correct.

By calculating the IoU and testing if it exceeds a threshold value, True Positives, False Positives and
False Negatives can be defined in the context of object detection. For the following definitions,
PR is the set of all predicted bounding boxes and GT is the set of ground truth bounding boxes.
Following this, objects can be counted class-specifically.

• True Positive (TPclass): Since most predictions are not pixel-perfect, an IoU threshold threshIoU

must be chosen for the definition of TP detections. Additionally, a confidence threshold
threshcon f can be applied to filter noisy low-confidence predictions. A specific detected ob-
ject A ∈ PR is considered where a ground truth object B ∈ GT exists so that IoU(Abb, Bbb) ≥
threshIoU , Aclass = Bclass and Acon f ≥ threshcon f . This is counted as True Positive detection
for the respective Aclass = Bclass.

• False Positive (FPclass): A predicted object A ∈ PR is considered where no object B ∈ GT
exists within the ground truth, so that the TP conditions explained above are fulfilled. This
detection is counted as False Positive for the predicted class Aclass.
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2.3 Object Detection Metrics

• False Negatives (FNclass): Conversely, a ground truth object B ∈ GT is considered where
no object A ∈ PR has been predicted so that the TP conditions are fulfilled. This is counted
as False Negative for that ground truth class Bclass.

If those class-specific metrics are available, the corresponding class-independent metrics can be
defined by summing the class-specific occurrences (Formula 2.1, 2.2 and 2.3):

TP = ∑
class

TPclass (2.1)

FP = ∑
class

FPclass (2.2)

FN = ∑
class

FNclass (2.3)

For this work, threshIoU = 0.5 is applied.

Note that the IoU Threshold does not account for quality differences of predicted bounding boxes
besides exceeding the provided threshold, which is a limitation for all metrics based on that.

2.3.3 Precision and Recall

Following the previous definitions, the metrics Precision and Recall can be calculated. For this, an
additional confidence threshold threscon f can be applied where each prediction A is only included
if Acon f ≥ threshcon f .

The Precision indicates the proportion of correctly predicted elements from all predicted objects.
Therefore, a precision value of 1 indicates that all predicted objects are True Positives, indepen-
dently of how many objects were predicted (Formula 2.4).

Precision =
TP

TP + FP
(2.4)

The Recall is the proportion of all detected objects from all objects that should have been detected.
A recall value of 1 specifies that all ground truth objects have been detected, independently of
how many False Positives have been included in the prediction (Formula 2.5).

Recall =
TP

TP + FN
(2.5)

Precision and Recall can be calculated class-specifically and class-independently.

The class-independent recall and precision is calculated as defined in Formulas 2.4 and 2.5, using
TP, FP and FN as defined in Formulas 2.1, 2.2 and 2.3.
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Chapter 2 Theoretical Foundations

TP, FPclass and FN of Formula 2.4 and Formula 2.5 can be substituted by TPclass, FPclass and
FNclass as defined in the previous section in order to calculate the class-specific Precisionclass and
Recallclass.

2.3.4 Average Precision

The number of predictions as well as their quality often varies significantly for different threshcon f

values during the calculation of the metrics defined in Section 2.3.2. To account for this, the
Average Precision (AP) is a commonly used metric in object detection. The meaning and calculation
process of the AP metric is introduced within this section.

Precision-Recall Curve

A weak estimator has to make more predictions with low confidence and precision in order to
reach a high level of recall. Conversely, if the precision stays relatively high with higher re-
call values, this can be seen as an indicator for good model performance. Therefore, plotting a
Precision-Recall Curve (PR Curve) for each individual class can be utilized for comparing models.

As an example for calculating the PR-curve, consider the predictions depicted in Table 2.3.4,
which are ordered by confidence. TP detections are marked by X, FP detections are marked
by X. Precision and Recall for each individual point are then calculated row-wise starting from
the top row, considering the total count of all previous TP/FP until the current row. Therefore,
Precision decreases with every FP and Recall increases with every TP.

Pt Conf TP? Precision Recall
R 0.95 X 1.00 0.07
Y 0.95 X 0.50 0.07
J 0.91 X 0.67 0.13
A 0.88 X 0.50 0.13
U 0.84 X 0.40 0.13
C 0.80 X 0.33 0.13
M 0.78 X 0.29 0.13
F 0.74 X 0.25 0.13
D 0.71 X 0.22 0.13
B 0.70 X 0.27 0.20
G 0.67 X 0.27 0.20
... ... ... ... ...

Table 2.1: PR-curve (values). Source: [23] Figure 2.4: Calculation of the PR-curve (plot).
Image Source: [23]

Area under PR-curve

As shown in Figure 2.4, plotting the PR curve often depicts a zigzac pattern with the precision
going up and down as recall increases. Therefore, comparing different plots visually is not always
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suitable. However, calculating the area under the PR-curve while smoothing the zigzac curve by
using an interpolated precision of relevant points results in a numeric value that can be used in
order to compare the quality of different model predictions. This metric is called Average Precision
(AP).

Calculating the area under the PR-curve results in the AP for a specific class. The AP is calculated
by interpolating through all points n (Formula 2.6 and Formula 2.7):

AP = ∑
n
(rn+1 − rn)pinter(rn+1) (2.6)

with
pinter(rn+1) = max

r̃:r̃≥rn+1
p(r̃) (2.7)

rn — Recall level of n-th point (cf. n-th row of Table 2.3.4)
pinter(rn+1) — Interpolated recall value for recall level rn+1

p(r̃) — (Not interpolated) precision value at given recall r̃

A visualization of this interpolation is depicted in Figure 2.5.

Figure 2.5: PR curve utilizing precision values interpolated for each occuring recall value as defined in For-
mula 2.6. The interpolation is used in order to smoothen the zigzac pattern of precision values
measured for specific recall values. Image Source: [23]

Note that the precision and recall values are class-specific as defined in Section 2.3.2.

Instead of the defined interpolation performed for all points as depicted in Formula 2.6, other
variations of this interpolation can be applied as well. Examples are the 11-point interpolated AP
used in the Pascal VOC 2008 challenge [u4] and the 101-point interpolation utilized by the COCO
evaluation. A more detailled breakdown of those variations can be found in [23]. However, this
work uses the AP interpolated for all points as defined.
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APx denotes that in order to calculate recall and precision, an IoU Threshold of x is used. In this
work, AP0.5 is utilized. Therefore, any reference to AP implies the usage of the defined AP0.5

metric.

Mean Average Precision (mAP)

After calculating each class-specific AP, the arithmetic mean of each class AP is the mean Average
Precision (mAP) which is defined in Formula 2.8. The mAP is commonly used to evaluate the
performance of models on data sets like COCO. Note that COCO utilizes a 101 point-interpolated
AP instead of interpolating over all points.

mAP =
∑c

i=1 AP(i)
c

(2.8)

c — : Number of Classes
AP(i) — : Average Precision of Class i

2.4 YOLO - YOU ONLY LOOK ONCE

Object detection consists of two challenges: localization and classification. Two-stage object detec-
tors like the R-CNN architecture [4, 5] seperate these two tasks (cf. Appendix A.3). After gen-
erating region proposals for potential objects, each region is classified as second step. However,
two-stage approach comes at the cost of performance. One-stage object detectors try to directly
predict object locations as well as their classes. The difference in speed is why one-stage object
prediction is crucial in order to achieve real-time prediction performance.

Predicting UI elements in (near-)real-time allows for the observing GUI operations such as scrolling,
sliders or other interactive elements. Additionally, a fast architecture can be considered to have a
performance headroom high enough for further increases in resolution. In contrast to object de-
tection problems where many images only consist of a few objects to detect, GUI screenshots often
contain a very high amount of smaller objects. A low resolution may result in these objects being
barely detectable. Furthermore, predicting more images within the same time frame also implies
better scalability, for example running multiple GUI interaction scripts for different applications
at the same time where a single GPU is sufficient for image processing.

The YOLOv3-SPP architecture has been used for the majority of evaluations in this work. It allows
a sufficient trade-off between speed and accuracy. It further implements features like multi-scale
training, where the network is being trained on multiple resolutions. This may be particularly
useful for detecting elements on GUI screenshots with different resolution. Additionally, it al-
lows multilabel prediction, where each detected object can have multiple classes assigned. This is
excessively utilized in order to implement hierarchic labeling, which is introduced later in Chap-
ter 3.

Note that the methods introduced in this work are not dependent on this specific architecture,
although the specific results or implementation details may vary using another architecture.
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2.4 YOLO - You Only Look Once

You Only Look Once (YOLO) [7, 8, 9] is a real-time object detection architecture family. As the
name indicates, YOLO predicts objects from input images within a single pass by framing object
detection as regression task. YOLOv3-SPP is a variant of YOLOv3 which is the third major version
of the YOLO architecture.

Figure 2.6: Grid cell-based object detection.
Image source: [7]

YOLO divides the input image into an SxS grid. A certain grid cell is responsible for all objects
which center is located inside the cell. Each cell predicts bounding boxes as well as corresponding
confidence scores (Figure 2.6.

The confidence score as defined in Formula 2.9 indicates how confident the model is about the
presence of the predicted object and the assumed accuracy of the bounding box prediction1.

con f idence = Probability(object) ∗ IoU(groundtruth, prediction) (2.9)

Instead of directly predicting the location of bounding boxes, offsets from Anchor Boxes are pre-
dicted which serve as bounding box priors. To determine those priors, k-means clustering is per-
formed on the bounding boxes of the training data set before the actual model training. To im-
prove the performance for objects of different sizes, YOLOv3 predicts bounding boxes at three
different scales. For each scale, three anchor boxes are used and three bounding boxes are pre-
dicted per grid cell.

Each bounding box prediction consists of the five coordinates tx, ty, tw, th and to. Using these
predictions, the actual bounding box location bx, by, bw, bh (x, y, width, height) can be calculated
(Figure 2.7 and Formula 2.10).

1Note that Probability(object) ∗ IoU(groundtruth, prediction) is the ideal prediction YOLO is trained to predict for the
con f idence value. It is not the calculation of con f idence itself, since groundtruth is not available during prediction.
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Figure 2.7: Anchor Box predictions. Image
Source: [8]

bx = σ(tx) + cx (2.10)

by = σ(ty) + cy

bw = pwetw

bh = pheth

Pr(object) ∗ IoU(b, object) = σ(to)

tx, ty — Offset from Anchor Box center
cx, cy — Cell position as offset from the top left image corner

pw, ph — Bounding Box prior width and height
σ — Logistic activation function which bounds values inside the range (0, 1)

Additionally, multi-scale training is performed where the input resolution randomly changes in
a certain range. This forces the network to become robust against input images with different
resolutions. Every 10 batches, the input size changes and the network is resized to fit the new
input resolution2.

In contrast to earlier versions, YOLOv3 uses independent logistic classifiers instead of softmax acti-
vations for class predictions as depicted in Figure 2.8. This enables the usage of multilabel classi-
fication, where one object can have multiple classes assigned. For example, one object can have
assigned both Human and Woman classes.

2Intuitively, this technique may be particularly useful for detecting user interface elements as input screenshots may
vary in resolution.
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2.4 YOLO - You Only Look Once

Figure 2.8: Left: Outputs of the last layer without activation.
Top: Softmax scores. As softmax results in a probability distribution, the maximum value is the
predicted class, which does not account for multi-label classification.
Bottom: Using independent logistic classifiers, the resulting scores depict the predicted confi-
dence independently for each class. This allows for one object being assigned to multiple classes
with high confidence. Classes can be filtered using a confidence threshold.

As stated earlier, YOLOv3-SPP is a variant of YOLOv3 and the main architecture utilized in this
work. In YOLOv3-SPP, the use of multi-scale features is further improved due to the use of
Spacial Pyramid Pooling [24, 14] (SPP). As some layers such as classification layers at the end of the
network require fixed input dimensions, the networks require an input image of a fixed size (for
example 224x224). As it is trained for that specific resolution, this might reduce the prediction
performance for arbitrary image sizes. By using a SPP layer as depicted in Figure 2.9, a fixed
length representation is calculated from the input to this layer, which allows the use of arbitrary
size images without changing and re-training the network architecture.

Figure 2.9: Spatial Pyramid Pooling calculates a fixed-length representation of variable input dimensions.
Image Source: [24]
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3 DATA SET CONCEPTION

When evaluating the performance of certain architectures, metrics, data augmentation or other
techniques, data sets such as COCO [u3] are a common choice. They act as the benchmark for ob-
ject detection algorithms and allow the performance comparison of different methods. However,
applying state-of-the-art algorithms to solve real world problems often suffers from the lack of
suitable data sets including sufficient labeled data with the required level of quality.

The chapter starts with a brief overview about modern GUI types in Section 3.1. This section
discusses why web pages can be seen as representative for a variety of common GUIs and provide
an easy-to-access raw data source for detecting GUI elements.

Creating a data set for a specific task may have different requirements, according to the task, type
of data and data source. Within this work, two types of data aquisition considered. Both are
different, but they are not independent.

The first data aquisition method is the collection of web pages through web crawling, where labels
are aquired automatically through DOM analysis. Since this approach has several limitations
introducing label noise, it is referred to as LQDOM (low-quality DOM-labeled data set). This data
set already existed prior to this work and is used as training data for weakly supervised pre-training.
In order to discuss the limitations as well as their implications, Section 3.2 covers an explanation
of the data pipeline and the analysis procedure.

The second data aquisition method manually refines selected pages collected by the first ap-
proach. The conception of high quality data sets based on the aquired low quality data is dis-
cussed in Section 3.3. Based on that, Section 3.4 covers the human labeling process that resulted
in two data set versions HQv1 and HQv2 as well as a test set named FINAL-TEST.

Pre- and Post-processing in order to preparate the data for object detection is discussed in Section
3.5. Finally, Section 3.6 provides an overview about the data set variants as well as the size of each
data set.

Figure 3.1 provides an overview about the data pipeline that is introduced in this section and
serves as reference.
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Chapter 3 Data Set Conception

Figure 3.1: Data and training pipeline introduced in this section. Training cycles depict training over
multiple epochs. Red: Low-Quality data. Green: High quality data sets. Yellow: Extra test set
for final evaluation containing manually selected screenshots.
Included Image Sources: [img2, img3, img4, img5, img6]

References:
[1] - Section 3.2.1
[2] - Section 3.2.2
[3] + [4] - Section 3.4
[5] + [6] - Section 3.3.2
[7] + [8] - Section 4.3
[9] - Chapter 5 and Chapter 6
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3.1 Graphical User Interfaces

3.1 GRAPHICAL USER INTERFACES

Human-Computer-Interaction has developed significantly over the years. While terminal us-
age is still a common tool for IT professionals as well as enthusiasts, interacting via on-screen
icons, menus and similar graphical components using a pointing device has become standard for
decades.

The design of average Graphical User Interfaces (GUIs) has changed rapidly over time, including
a wide variety of appearances. However, due to the wide distribution and advantages of web
frameworks, there is a trend of unification. For the purpose of this work, GUIs can be classified
into one of the following categories1:

• Web GUIs: While early web pages mainly consisted of just bare text and hyperlinks, mod-
ern HTML5 [u5] pages utilize seamless and responsive front-ends. Besides traditional web
pages, modern web frameworks allow the creation of web applications that can be used like
a native desktop application, without the installation of a dedicated client. Examples for
this type of web apps are Google Docs [u6], Overleaf [u7], Discord [u8] and Slack [u9].

• Desktop Applications: Native desktop applications are rendered by the underlying win-
dow manager of the operating system. Being not tied to the restrictions web pages have
inside a browser, they can traditionally be arbitrary unique and complex. However, im-
plementing a clear, streamlined and straightforward GUI is important in modern software
design. This has been further amplified by the demand for cross-platform GUIs as well as
touch screen support. Frameworks like Electron [u10] allow the development of GUIs for
desktop applications using modern HTML technologies. Well-known examples utilizing
Electron are Visual Studio Code[u11] or the desktop clients of Discord and Slack.

• Mobile Apps: Despite differences in operating systems and their respective rendering and
detailed design patterns, interaction using mouse and keyboard is still quite similar com-
paring these platforms. However, the distribution of smartphones (and mobile apps respec-
tively) introduced a necessity for other design choices. While traditional desktop applica-
tions often rely on a lot of textual information and small elements, high pixel density on
small screens that rely solely on touch inputs require other approaches. Additionally, mo-
bile App GUIs need to be streamlined, focused and intuitively understandable by a wide
variety of users. To provide a unified user experience throughout different apps, guidelines
such as the Material Design for Android[u12] have been created. Additionally, technolo-
gies such as Progressive Web Apps[u13] or frameworks like Flutter[u14] further amplify the
unification of GUI appearance as they allow the implementation of HTML-based GUIs for
mobile apps.

• Other native non-standard GUIs: This category includes for example video games or UEFI
GUIs which can greatly differ from the other types of user interfaces. Despite a particular
interface can look similar to more traditional GUIs within certain aspects as for example
menu buttons, these GUIs can significantly vary. Therefore, they are not a focus of this
work.

1These categories are not an extensive definition nor a study of GUI types. Rather, they are intended only to be a rough
seperation of the most common GUIs for applications a typical user might encounter.
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The differences between mobile or native applications and the appearance of web pages tends
to vanish in favor of platform-independent technology and unified look. As web pages provide
an easy-to-access data source for a wide variety of complex GUIs, the recognition of web page
elements is the main focus of this work.

Note that this may not account for some element types primarly found in mobile apps such as
sliders or switches. However, the general principles such as the data set design discussed in
Section 3.3.1 can still apply with slight modifications such as new element classes.

3.2 ACQUISITION OF LOW-QUALITY DATA VIA DOM ANALYSIS

AND WEB CRAWLING

Screenshots of web page GUIs can be obtained automatically via web crawling. To obtain infor-
mation about occurring elements and their respective element type, location and size, the Doc-
ument Object Model of the rendered page can be analyzed on-the-fly. This combination of both
techniques can be used in order to obtain a large amount of labeled training data. The resulting
data set is named LQDOM and consists of 93,896 full-size web page screenshots that have been
used for training.

The following sections provide an overview about the analysis and crawling process. This in-
cludes basic information about the implementation as well as advantages and limitations of this
approach.

3.2.1 Crawling for Data

Over 100,000 web pages were crawled around June to August of 2019 prior to this work2. To
avoid bias towards a few, popular pages, only a small, varying amount of pages per domain were
crawled.

Per sample, a stitched high-resolution screenshot of the entire page, annotations obtained from
the DOM analysis and the corresponding URL have been saved.

This is the first step of the pipeline depicted in Figure 3.1.

3.2.2 DOM Analysis

Position and size of GUI Elements are often determined by hierarchically arranged tree struc-
tures. For HTML or other XML-representable GUIs, this structure order can be represented and
manipulated using the Document Object Model (DOM) [u15, u16, u17].

2Since some screenshots are processed manually by several people during the pipeline, it is sensible to apply some
rules such as blacklist-based filtering of NSFW content.
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Analyzing the DOM tree provides information about the current state of the respective rendering,
including element types and positions. It is utilized by web developers, software testers as well
as web crawlers or accessibility frameworks. This is the second step in the pipeline depicted in
Figure 3.1.

Advantages

For GUI element detection, automated DOM analysis can be used in combination with a web
crawler to extract huge amounts of data into a data set. The data can further be used to train
an object detector that detects elements on screenshots without having to rely on the DOM. This
approach has several advantages:

• Technology-dependent data collection for training a more technology-independent algo-
rithm: While the DOM analysis relies on the availability of the DOM information, the input
of an object detector consists of just a screenshot of the rendered GUI. Therefore, the trained
detector may work on GUIs without the availability of the respective DOM, which also ac-
counts for non-web page GUIs and outliers.

• Automation: The analysis can be performed by an algorithm. Therefore, human interven-
tion is not needed when collecting the data.

• Scalability: When combined with a web crawler, data of thousands of different web GUIs
can be collected. The runtime of the data collection isO(n) where n is the number of crawled
pages.

Implementation

For analysing the LQDOM data, the Selenium framework [u18] is utilized. Selenium is a web
automation framework that allows remote control of web browsers such as Google Chrome [u19]
or Mozilla Firefox [u20]. It allows to access debugging information of the current page, including
rendering-based data. For example, it can be checked if a certain element node of the DOM tree
is displayed and which position it belongs to.

Since this information is not always correct or sufficient, a few rules can be applied to filter rele-
vant elements. The implemented rule set already existed prior to this work and has been included
in Appendix B. It may be refined in future work. Note that the applied rules are always a trade-off
between Recall and Precision of this method, as web elements are implemented in many varia-
tions. Too restrictive filters result in too few elements being found. If they are too permissive,
this results in False Positives. A trade-off is achieved by applying restrictive filters for labeling
an element as a specific class such as Button or Textfield and more permissive filters for finding
elements with the class being unclear (Interactable only).

Limitations

Automated DOM analysis is limited. Obvious limitations are that it is only possible when a
DOM is available and analyzing elements is only feasable for defined element types like Buttons
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or Textfields. For example, it is not possible to distinct between different types of well-known
and established Icons, since their functionality often can not be reliably derived from the DOM.
However, from the persepective of a user, their functionality is depicted by the corresponding
graphic3.

Apparent properties of DOM elements do not always correspond to their visual properties. Con-
versely, a certain rendered element like a Textbox may not be identified as such by using automated
DOM analysis only. Furthermore, elements may appear in the DOM that significantly differ from
what is rendered on the screen. This may occur due to the use of dynamic JavaScript that controls
the actual behaviour of an element. Figure 3.2 depicts such an example.

However, if it is known which specific visual element to search for, e.g. by a web developer de-
bugging a website, it is possible to retrieve the corresponding element from the DOM. Verification
of the chosen DOM element can be achieved by comparing the respective properties to the given
visual element such as position and size.

Figure 3.2: Information from the DOM is not always reliable as many edge cases occur. While not-real im-
ages appear in the DOM (orange), the rating stars are not recognized as elements by the auto-
mated analysis. The text boxes at the top (green) appear to be much smaller in the DOM as they
are visually. Image Source: DOM analysis of [img7]

3This allows an object detection algorithm to distinct between different icons as well, which can then be used to predict
functionality.
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.

Despite its limitations, huge amounts of data can be automatically obtained when combining
DOM analysis with a web crawler, which is introduced in the next section.

3.3 HIGH-QUALITY DATA SET CONCEPTION

As the automated collection of labeled data is limited, a high-quality data set labeled by humans
is introduced, which is then used to perform a multi-stage training with a weak supervision ap-
proach. Since the training and evaluation results heavily depend on the quality of this data set,
the conception of the data set and labeling process which is introduced in this chapter are key
factors.

Using manual refinement, three data sets have been created: HQv1 (244 web pages) and HQv2
(844 web pages), which have been used for training and initial evaluation. Additionally, FINAL-
TEST(65 web pages) has been created as another indicator for real-world performance.

3.3.1 Design Principles

When creating a data set, the label representation - or what should be detected and how the de-
tected elements are annotated - is an important design choice as it emulates the considered ideal
detection. This ideal detection needs to be clearly formulated, which can be quite trivial for many
object detection tasks. As an example, consider a person bounding box detector. A data set could
just have one class (Person) and each object that should be detected (every human in a photo)
would have a bounding box specified by four points. However, if distinct parts of the human
body should be detected seperately - such as Head or Upper Body, class representation as well as
annotation have should be created with that in mind.

Although this may seem obvious for such cases, this is not necessarily the case for GUI element
detection. While the general structures of a person or a street sign is similar in most cases, GUIs of
different websites/applications may differ significantly and even design principles have changed
clearly over time. Trying to distinct between all types of GUI element in modern GUIs4 is not
always an easy task due to different GUI design approaches as well as edge cases that may occur.
This is not only the case for the object detector itself. Human labelers that annotate the data need
definitions that are as straightforward as possible, which is in direct contrast to complex and
sometimes messy real-world GUI designs. Additionally, for some kind of elements there may be
only a small amount of samples, which amplifies imbalancing problems.

To anticipate these problems, the following design principles for creating a dedicated data set
were deduced:

• Few, but meaningful classes: Focus on as few classes as possible while still being able to
distinct between the majority of important elements.

4As an illustration, there is a non-comprehensive list of different element types at https://en.wikipedia.org/wiki/
List_of_graphical_user_interface_elements
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• Sub-classes: Icons are one of the most important element categories. A vast amount of
different types of elements like popular menu buttons such as sandwich or gear symbols
or floppy disk save buttons are basically a subtype of icon. Subclasses are therefore named
Mainclass.Subclass. This also allows for class annotations like Icon.Arrow.Right.

• Nested Objects, atomic elements: More complex or unique types of elements can be split
up into smaller parts, while grouping together smaller parts again may be done via post-
processing. This implies that for example Texts and Icons on buttons should be annotated
as well. Besides the dividing of more complex elements into essential elements and classes,
this atomic annotation allows a more robust detection of elements like menu tabs without
further dedicated samples. Another advantage is that even if a button is not detected as
such, the model may still correctly detect the text on the button. Additionally, the model is
trained to detect for example text in almost any element constellation, which may improve
overall robustness. An example is depicted in Figure 3.4.

• Over-annotation: During annotation, more information can be annotated than finally used.
Since the annotation can be done hierarchically, subclasses such as Icon.Arrow.Down and
Icon.Arrow.Right may be grouped together into just Icon.Arrow later on. This allows further
investigation of different labeling detail levels without re-labeling data, while not introduc-
ing significant overhead during annotation. Additionally, it allows for later experimentation
such as implementing overlay recognition subsequent to this work.

• Annotating candidates as-seen: Especially on webpages, images such as logos, ads or even
screenshots of other GUIs may be included frequently. Such chunks may be detected as im-
ages when analyzing the DOM or identified as such by experienced web developers. How-
ever, an object detection algorithm performing solely on screenshots does not have access
to that information and does not have experience with internal functionality of websites or
GUIs in general. As an example, the distinction of embedded ad banners depicting faked
buttons as shown in Figure 3.3 may be learned implicitly. However, this could worsen the
detection of real buttons in interactive environments if the model falsely assumes it to be
an ad. As the final prediction of a deep object detection model is the sum of very complex
filters, this might result in unforeseen bad predictions in some cases that are barely explain-
able. It can be hard to reproduce what implicit rules a model may have learned, therefore it is
suitable to reduce the need to learn implicit knowledge per-design. For this reason, elements
are annotated as-seen: if an element appears to be a button visually, it is annotated as button,
even if it is just part of an included image to prevent confusion. Each detected element is
considered a candidate. For an implementation using the model trained like that, validation
can be done at runtime by interacting with the GUI5.

• Minimal Bounding Boxes: GUI object structures are often built tabular. As an example,
menu bars include multiple elements with the same bounding box size that are placed along
a horizontal or vertical line. However, it is often hard or not even possible to determine the
exact boundaries as given by the GUI-defining code based purely on visual information. To
remove noise and make detection easier, minimal bounding boxes are annotated instead.
An example is shown in Figure 3.5. This includes for example tabular menu cells where
there is no explicit visual border. Minimal bounding boxes are defined as the smallest pos-
sible rectangle to contain every pixel of a visible element such as text, without any implicit
structural information.

5This does not necessarily imply clicking on element. A human would for example hover over a potential hyperlink
and watch if the cursor changes, which is an interaction as well.

34



3.3 High-Quality data set Conception

• Text as blocks: Hyperlinks are a crucial part of web pages and must be handled by a GUI
element detection algorithm as well. However, it is often not obvious if a given text is a
hyperlink or just normal text. The well-known hyperlink formatting may naively be as-
sumed as indicator for clickable hyperlinks. However, this is not always true and can be
misleading. Even though the candidate definition intentionally encourages false positives,
the opposite may still be problematic, as many hyperlinks are not formatted that way. Of-
ten, links appear just like normal text. In some cases, the context may indicate a hyperlink
for a user. Without interaction such as hovering over potential links, distinguishing can be
hard even for humans. To circumvent this problem, text is labeled blockwise. A text block
is defined as connected text of one paragraph with the same font, size and formatting. The
ideal prediction for a potential hyperlink within continuous text is considered a textblock
element inside another textblock element. Examples are shown in Figure 3.6.

The focus on essential, atomic main classes additionally allows for easier definition of each class
and therefore an easier annotation process (see Section 3.4). Furthermore, it reduces the distance
of the web GUI element detection task to other applications such as native desktop applications
or mobile apps. Figure 3.7 depicts a web page annotation following the defined principles. Addi-
tional examples are provided in Appendix F.1.

Figure 3.3: Element Candidates (extreme example): Guessing the element type based on visual information
only can be hard for humans as well. This is exploited in a scamming technique [u21] which uses
ads disguised as buttons in order to distribute malicious software. Image Source: [u21]

Figure 3.4: Atomic Elements: The microphone icon has its own functionality. Therefore, annotating just a
searchbar would not be sufficient. The model is trained to detect the text and the icons even with
the textbox as background. Image source: [img8] (cropped).
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(a) Before: Boundaries as assumed after DOM analysis.
Compared to minimal bounding boxes, the boundaries
are barely determinable based on visual information
only.

(b) After: Minimal bounding boxes circumvent the prob-
lem depicted left. 3.5.

Figure 3.5: Minimal Bounding Boxes. Image Source: DOM analysis/annotation of [img6]

(a) Blocks of text of the same paragraph with
the same font, size and formatting. Image
Source: [img9] (Crop)

(b) Hyperlinks are annotated as text-inside-text.
Image Source: [u11]

Figure 3.6: Text Blocks.

Figure 3.7: Sample excerpt of annotated webpage. Image Source: [img10]

.
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3.3.2 Preventing Information Leakage

Since training is evaluated on data not included during training (cf. Appendix A.2), tuning for
example hyperparameters in order to achieve a better score on the evaluation data implicitly gives
the model feedback based on the evaluation data during this cycle.

Therefore, specific parameters that perform better on the evaluation data do not neccessarily per-
form better on real-world data afterwards. This phenomenon is known as information leakage in
machine learning. This section covers two different types of leakage relevant for this work. It also
covers approaches that try to minimize their influence in order to measure the model performance
as realistic as possible.

Validation and Test Sets

The implicit feedback when tuning training parameters as described above is a common problem
in supervised learning. To prevent the type of leakage, it is possible to hold back a certain amount
of data during the optimization process. After all hyperparameters and methods are determined
and the best performing models are selected, the score on the held back test set is calculated as
very last step of the whole researching process. The evaluation data used during hyperparameter
optimization is referred to as validation set (HQv1/HQv2-VAL), the hold back data is called test set
(FINAL-TEST).

However, this may have some drawbacks depending on the data. If the final test set consists of
too few samples, the evaluation will not be meaningful. This further worsens if the data is imbal-
anced, since some classes may already have few samples without held back test data. Therefore,
the final test set has to contain enough data as well. However, labeled data may be expensive to
obtain and holding back samples during the main training process further reduces the amount of
available data for training and validation.

DOM Analysis Leakage

Another problem arises due to the data aquiration and multi-step training. The entire LQDOM
data set includes automatically crawled data. A subset of this data is revised by humans in order
to create the HQv1/HQv2 data sets. This implies, that a specific web page screenshot included in
HQv1/HQv2-VAL/FINAL-TEST may have been already present in LQDOM and therefore in train-
ing data. Since the subset that is manually refined during labeling is sampled randomly from
LQDOM, it is possible for information leakage to occur, making validation and testing inconsis-
tent.

This is not limited to the exact pages. During crawling, multiple pages of the same domain may
be included. Since pages of the same web domain usually have the same overall appearance, the
leakage problem extends to these as well. Therefore, in order to counter leakage during this step,
the train/validation subsets for all data sets can be chosen using the algorithm shown in listing
3.1:
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Listing 3.1: Extended Train/Val Split based on crawled Web Page Data (Pseudo-Code)

1 def c r e a t e _ d a t a s e t _ s p l i t s (LQ_DOM: l i s t ,\
2 d s t _ l e n _ h q _ t r a i n : in t , \
3 dst_ len_hq_val : i n t ) :
4 HQ_TRAIN = [ ]
5 HQ_VAL = [ ]
6
7 f o r i in range ( dst_ len_hq_val ) :
8 sample = select_random_sample (LQ_DOM)
9 HQ_VAL. append ( sample )

10 leaks = find_all_pages_from_same_subdomain (LQ_DOM, sample )
11
12 f o r leak_sample in leaks :
13 LQ_DOM. remove ( candidate )
14
15 f o r i in range ( d s t _ l e n _ h q _ t r a i n ) :
16 HQ_TRAIN. append ( select_random_sample (LQ_DOM) )
17
18 return LQ_DOM, HQ_TRAIN, HQ_VAL

This algorithm assumes that the source URL of each crawled page is available. For each sample
selected for HQ-VAL, all images of pages from the same subdomain are filtered out of LQDOM.
After that, HQ-TRAIN can be sampled normally as it does not have to account for the leakage.
Note that the algorithm depicted only accounts for single HQ data set.

Even though this can be assumed to prevent large proportions of the described effect, a few draw-
backs and implications have to be taken into consideration:

• The filtering has to be assured for both evaluation on the high quality data set and the final
test set. In order to account the described leakage effect, a certain data set used for pre-
training always limits potential evaluation data for the high quality data sets.

• Depending on the crawling procedure and filtering according to the algorithm, this reduces
the amount of data in the low quality data set. To limit this data drainage, only the subdo-
main is taken into consideration in the implementation of this work.

• The same may page be reachable under different domains and different pages may use very
similar designs, patterns or even templates/themes. Naive domain-based filtering does not
account for this, therefore the effect is limited in this case. However, it is assumed that
diminishing return in terms of cost-benefit is reached quickly when taking more advanced
methods into consideration. To a certain degree, this even is intended behaviour. Learning
to perform better on a wider range of typical modern UI design patterns is part of what can
make a pre-training effective.

• If the low quality data set should be improved later on by obtaining new data, the new low
quality data set must be filtered accordingly as well for the results to be comparable. For
example, this can be neccessary in order to account for latest web technologies, to include
improved DOM analysis or to increase the number of included samples.

38



3.3 High-Quality data set Conception

Determining the Test Set

So far, all data has originated from the initially crawled data. Since a final test set is used for a
better approximation of real-world performance, it is possible to move away from this principle,
using a greater variety of GUI screenshots in this case for more realistic results. This is possible
due to the convergence of web pages and traditional software appearance as described in Section
3.1. Since random webpage screenshots as in LQDOM and the HQ data sets may not always
model the desired final use cases of such an detector, it is also an opportunity to introduce selected
test samples that are not limited to web page screenshots. However, this has some implications:

• In contrast to many other tasks in machine learning, the test data does not always originate
from the same source. The domain the models are trained for is only a subset of the domain
samples in the test are. Therefore, some characteristics may differ more than previously.

• While the scores might be lower due to this, it is assumed that this models generic GUI
element detection better than only using randomly selected webpage screenshots do. Since
this handicap is the same for all trained models, comparison can still be considered fair.
However, these differences have to be accounted for during evaluation of the test results.

• Samples are selected by hand to model potential use-cases. This may introduce human bias.

• If a sample is a web page screenshot, the leakage described in Section 3.3.2 has to be ac-
counted for.

The creation of the test set is marked as the sixth step in the pipeline of Figure 3.1. The testing
process is the last step of the pipeline.

3.3.3 Classes and Sub-classes

Element classes are labeled hierarchically as proposed in Section 3.3.1. There are main-classes
and sub-classes. The former are rough classifications for elements, where the latter are more fine-
grained.

During labeling, the following main-classes where defined which may have individual sub-classes:

• Interactable: This is considered to be a fallback class for elements not covered be the remain-
ing classes during labeling. Note that for training, the Interactable class is used differently,
which is introduced in Section 4.2.

• Image: Included images with arbitrary complex image content. As a special case, some
logos may be labeled image and text at the same time (edge cases).

• Button: Any element that looks like a typical button. In most cases, Buttons have a rectan-
gular shape.

• Textfield: The bounding box is defined by the visual borders that may include for example
an Icon.Search.
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• Dropdown: Only real dropdowns are classified as such. Many modern webpages or GUIs
include elements with dropdown-like appearance. As an example, menu items that are ba-
sically just a combination of text element and an Icon.Arrow.Down occur without any closed
border. These are labeled as such (atomic labeling, see section Section 3.3.1) and are not con-
sidered real dropdowns to avoid confusion.

• Checkbox-Radio: Even though Checkboxes and Radiobuttons have different functionality,
both are quite similar in appearance and are relatively rare on modern webpages. To account
for this, this main-class includes both and is further divided into Checkbox-Radio.Checkbox
and Checkbox-Radio.Radiobutton

• Icon: They consist of a stylistic pictogram of low complexity which is often associated with
a certain functionality (for example ’floppy drive’ for ’save’)6. These are considered to be
small elements in most cases. Even though there may be a few edge cases, this definition
allows the distinction between Images and Icons. Further, this allows to define sub-classes
which account for different types of elements, making element classifications hierarchic. As
described in Section 3.3.1, Icons inside Buttons are also considered independent elements to
be detected. A full list of all Icon sub-types is available in Appendix C.3.

– Icon.IconGroup: Although most Icon subclasses are self-explaining, there is one subclass
where elements are not labeled atomic. This category insists of symbols that occur as
a group, which are labeled as blocks instead. This is mainly due to the reason that
once for example rating stars appear on a page, blocks with the same or very similar
appearance often are included multiple times7. Atomic labeling of those objects would
make the labeling process unneccesserily tedious.

• Text: Despite modern web pages rely heavily on giving information through images, text
is still one of the most crucial parts of many GUIs. Therefore, the labeling of text is an
important part in the data set design as well. Labeling text as blocks as defined in Section
3.3.1 accounts for whole text sections as well as menu entries and hyperlinks. Fixed patterns
like menu structures can be clustered together again after detection. This also removes the
need of defining a variety of classes for different menu structures, making use of the atomic
element principle.

The prediction of a main-class can be considered an easier task than the distinction between sim-
ilar sub-classes. For example, a button and a textfield have great differences in terms of visual
characteristics. However, different icon types which are represented by respective sub-classes can
be quite similar.

3.4 LABELING PROCESS

Besides the data itself, a labeling process involving human labelers can lead to particular chal-
lenges. External labelers cannot be expected to have wide knowledge about machine learning
or possible edge cases. As a more advanced example, besides distinguishing humans from bots,

6According to cambridge dictionary, an icon is defined as ’a small picture or symbol on a computer screen that you
point to and click on (= press) with a mouse to give the computer an instruction’[u22]

7As an example, consider product pages where every product has rating stars next to it
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Google reCAPTCHA [u23] is designed to obtain and validate training data. Due to its widespread
usage, this has to be as intuitive and accessible as possible while still fulfilling the objective of ac-
quiring labeled data. Another strategy involves using Gamification in order to motivate labelers
by designing the labeling process as a game [25].

Even though this work utilizes a conventional labeling process, instructions being as straightfor-
ward as possible becomes especially important the more complex the data or use case is. The
data sets used in this work have been labeled by three external human labelers. The labeling has
been conducted using the principles described in Section 3.3.1 and the classes in Section 3.3.3 as
guidelines. This section provides a brief overview of the process, which is the third and fourth
step in the pipeline of Figure 3.1.

3.4.1 Reviews and Feedback

For quality assurance, there are techniques that distribute one sample to multiple labelers, using
cross-validation between the results of the participants to measure a level of consensus.

However, this requires to label the same samples multiple times and requires a certain level of
confidence of all participants to start with. Early tests indicated that a conventional review process
is more appropriate for the complexity of the real-world data as well as the guidelines to assure
the required quality.

In order to fine-tune the process, the labeling started with a warm-up phase including an exten-
sive review and feedback loop between the author and participants. This process was further
used to determine details such as the non-atomic labeling of the Icon.IconGroup as well as fine-
tuning the pre-labeling described in Section 3.4.3 to streamline the process.

Due to the initial warm-up phase, feedback and reviews became less required as the labeling
proceeded. Using a chat platform, all participants were able to communicate with each other,
asking questions and exchanging edge-cases. Examples of common edge cases have been col-
lected as reference. For that, it became apparent that it is suitable not only to provide edge cases
and how they should be handled, but also the reasons for that decision process. For example, the
candidates-as-seen labeling principle was explained based on real-world samples such as the scam-
ming technique depicted in Figure 3.3. During that, labelers showed interest in how the training
and data pipeline worked. Explaining basic machine learning principles and keeping them up-
to-date about the training results based on their annotated data strongly helped keeping them
motivated. This is crucial, as labeling can be quite monotonous and a lack of motivation causes
frustration, which may greatly decrease label quality.

3.4.2 Handling real-world data

The manually annotated data set consists of randomly sampled screenshots previously crawled
as discussed in Section 3.3.2. Since this data is sampled from in-the-wild online sources, samples
are not always valid. They may be corrupted due to connection or server errors or web pages
may still not be loaded correctly when taking the screenshot. Hard edge cases such as malformed
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designs or overlays may occur as well as pages with hundreds of redundant elements that would
be specifically tedious for a human to label.

For this reason, labelers have an option to skip samples and/or set specific flags during the pro-
cess. Even though flagged or skipped samples were filtered out for the purpose of this work, this
provides additional information which may be utilized in future work8.

The following flags where used during the labeling process:

• Overlays: Pages may load overlays such as ads or cookie notifications. Due to the Gen-
eral Data Protection Regulation (GDPR) introduced May 2018[u24], the latter have become
a common issue for automated web crawling as well. Browser extensions such as the I don’t
care about cookies plugin [u25] or ad blockers can be used in order to avoid certain overlays or
popups. However, overlays may still occur quite frequently. While small banners often do
not lead to any issues, whole-page-overlays as depicted in Figure 3.8 result in elements partly
obscured. Since larger screenshots are split during pre-processing as discussed in Section
3.5, a single split may not even contain the overlay itself, but just blurred background. In
certain situations, it may be impossible to implicitly detect whether an element is a back-
ground element or not based on a single split. Therefore, these images are not included for
the high-quality data sets. This flag also allows the collection of dedicated samples usable
for overlay recognition in future work.

• Bad Sample: Samples that may not be suited for the data set, for example connection er-
rors or otherwise malformed/not correctly rendered pages. Annotations with this flag are
skipped.

Figure 3.8: This Whole-Page-Overlay blurs all background elements. Image Source: [img11]

8Also see over-annotation in Section 3.3.1
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3.4.3 Pre-labeling

Labeling hundreds of web pages requires the creation of thousands of bounding boxes. In order
to speed up the process, pre-labeling can be used. Analog to using weak supervision for ML mod-
els, noisy samples can be utilized as baseline for human labelers instead of creating labels from
scratch. Labels given by DOM analysis only include few classes which may be incorrect and the
locations do often not meet the criteria defined in Section 3.3.1, for example by not being atomic
or minimal.

Early tests included additional text segmentations provided by the open source tool tesseract[u26].
However, the segmentations of tesseract on web page screenshots could not meet the quality re-
quirements and included many false positives as well as false negatives. Based on strongly neg-
ative labeler feedback, the inclusion of these predictions was counter-productive for the human
labeling process. Therefore, tesseract segmentations have not been included.

Later, the early pre-labels were replaced by predictions of models trained on currently available
data. These predictions were taken from a model that was not included in the evaluation. This
may further be used to implement an automated loop where pre-labels provide more significant
help the more the labeling process advances 9.

3.5 PRE- AND POST-PROCESSING

The application of object detection networks for high-resolution screenshots implies problems
which are discussed in this Section. As a workaround, additional pre- and post-processing steps
are proposed.

Most web pages include more content than a single screen view can reasonable display on a nor-
mal zoom setting. Since scrolling downwards is common on web pages, samples consist of high
resolution entire-page screenshots and their corresponding labels. Since the amount of content
displayed can be different for each page, the height of the screenshots varies significantly.

Even screenshots with a 1080p resolution may be substantially scaled down since state-of-the-
art object detection networks utilize a relatively low input resolution. For example, the original
YOLOv3-SPP configuration from Darknet has an input resolution of 608x608px[u27], which has
been increased to 704x704px in the default configuration described in Section 4.1.3. Increasing the
input resolution has significant impact on training performance and memory consumption. Fur-
thermore, since the height of the sample varies, scaling them to a fixed size would cause small
elements to be undetectable when scaling down a higher resolution screenshot (see Figure 3.9).

9According to labeler feedback, the model predictions provided substantial help.
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Figure 3.9: Screenshot of https://www.berlin.de/. The original has a resolution of 1903x7322px. When
downsizing the full-scale image to 704x704px, smaller elements such as icons may not be distin-
guishable anymore.

For the mentioned reasons, images are divided into splits with a maximum height of 1080px. Each
split after the first one includes the last 50px of the previous split at the top to avoid horizontal
cutting of elements. Note that this may result in some duplicate elements during training and
testing due to consecutive splits. This effect is neglected in the metric calculation.

For the labels annotated by DOM analysis, additional pre-processing includes for duplicate re-
moval based on an IoU Threshold10.

As the Tables in Section 3.6 show, the average whole page screenshot is divided into two or three
splits. After that, each individual split is resized to fit the input resolution of the network config-
uration. This is applied for all images as a pre-processing step.

For inference, the prediction results of each split can be merged together again in order to match
the original image. However, this process may introduce minor errors for large objects included in
multiple splits. Metrics are calculated using the split results in order to measure only the network
performance. This may cause some objects to occur twice in different splits due to the overlap
defined above. The influence of this behaviour is neglected during evaluation.

3.6 DATA SET VARIANTS

This section gives an overview about the size and names of the resulting data sets. Note that the
object count has been calculated from splits. This implies that a few objects may have counted

10Additional pre-processing that further reduces errors made by DOM analysis may help to improve results on this
data in the future.
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twice due to the splitting as explained in Section 3.511.

A more detailed overview including class counts for all classes is available in Appendix C.4.

3.6.1 LQDOM - Low Quality DOM Data Set

The Low Quality DOM Data Set LQDOM set refers to the noisy data aquired by web crawling
and HTML DOM analysis. To avoid data leakage if a web page that is included in a high-quality
validation set has been already included during LQDOM training, the latter has been filtered to
exclude samples from the same subdomain as in the human-labeled validation and test sets. Table
3.1 depicts the size of LQDOM.

Pages Splits Objects

LQDOM 93,896 229,755 8,905,452

Table 3.1: Sample and object count of LQDOM.

3.6.2 HQv1 - High Quality Data Set v1

HQv1 is the first version of the human-labeled data set. It was used for the majority of evaluations.
The size of HQv1 is shown in Table 3.2.

Pages Splits Objects

HQv1-TRAIN 194 504 22,233
HQv1-VAL 50 127 5,579

∑ 244 631 27,812

Table 3.2: Sample and object count of HQv1.

3.6.3 HQv2 - High Quality Data Set v2

Since even more data has been labeled over time, a second version of the high quality data set is
available, which is named HQv2. This can be used to measure the impact of the high-quality data
amount. Table 3.3 depicts the size of HQv2.

Pages Splits Objects

HQv2-TRAIN 683 1,690 72,552
HQv2-VAL 161 411 18,644

∑ 844 2,101 91,196

Table 3.3: Sample and object count of HQv2.

11These are also seen twice during training and evaluation. The impact of this is mostly neglected during further
evaluation in this work as it is consistent.
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3.6.4 FINAL-TEST

As the validation sets from the previous data sets are used for model selection, the final evaluation
is performed using another seperate data set to prevent information leakage (cf. Section 3.3.2).
This data set is named FINAL-TEST. Its size is depicted in Table 3.4.

Pages Splits Objects

FINAL-TEST 65 215 9,998

Table 3.4: Sample and object count of FINAL-TEST.
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4 EXPERIMENTAL SETUP

This chapter covers general conditions for both experimentation environment and evaluation.
Section 4.1 includes details about framework and hardware as well as baseline network configu-
rations. Section 4.2 defines labeling variants with a varying level of detail. Implementation details
of weak supervision and transfer learning are discussed in Section 4.3. Section 4.4 defines custom
metrics that are used for evaluation and discussion within the following chapters. Finally, the
model selection process is described in Section 4.5.

4.1 ENVIRONMENT

This section introduces details about the utilized Darknet [u28] framework and the system con-
figuration which was used for training. Additionally, it defines a baseline training configuration,
which is used in order to allow meaningful comparisons between individual experiments.

4.1.1 Darknet and YOLOv3

Darknet is an open source framework for training neural networks. It has been introduced by
Joseph Redmon who also published the original YOLO architectures until YOLOv3[7, 8, 9]. There-
fore, it includes the original reference implementations for the YOLO architecture family up to
version 3.

The development by the original author [u29] has been discontinued. A fork with extended func-
tionality is maintained by Alexey Bochkovskiy [u28]. In this work, the term Darknet always refer-
ences this fork.

Darknet implements several architectures and techniques. There are standard configurations
which are intended to be used as presets to achieve good results on a variety of object detec-
tion data sets. Each configuration file includes the net architecture as well as the specification of
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options such as hyperparameters or data augmentation [u30, u31]. Additionally, Darknet imple-
ments further features like state-of-the-art data augmentation techniques or experimental mem-
ory management that leverages CPU memory while training on GPU [u32]. These implemen-
tations do not always lead to better results, but allow experimentation. Depending on the data
set, further improvements compared to the default presets can be made. Although there is no
complete documentation available, most of the features are explained throughout github issues.

4.1.2 Hardware

The following hardware configuration has been used for the training experiments:

• 8x GTX 1080Ti (11 GiB VRAM each)

• Intel Xeon E5-2630 v4 (10 cores plus hyperthreading, 2.2 GHz)

• 226 GB RAM

Darknet can parallelize a single training on up to four GPUs [u28]. Note that the actual GPU
utilization varies as experiments were performed inside individual docker containers, using a
single GPU only on most cases.

4.1.3 Default Training Configuration

All experiments are variations based on a default preset, which is described in this section. It
is designed to model a training using the Darknet framework without additional task-specific
research. Realistically, only a few possible variations can be tested due to high training times and
permutation count. Therefore, the default preset used for the experiments models a naive baseline
following some of the best practises and presets recommended in [u28]. The latter have been
tweaked by the author of the framework with reference to state-of-the-art techniques to perform
well on a variety of object detection data sets.

Improvements made by the following experiments can be measured realistically against these
baseline results. Note that in order to achieve a fair comparison to implementations in other
frameworks, similar prerequisites, for example in terms of data augmentation techniques that are
implemented in darknet, should be assured.

The default preset is based on the YOLOv3-SPP configuration for the Darknet framework, which
is available at [u27]. The input resolution was increased to 704x704px, as a higher resolution in-
creases the prediction performance and training a model at this resolution was still possible using
the VRAM of the GPUs utilized. Additionally, data augmentation using the mixup algorithm [26]
has been included.

48



4.2 Label Variants

4.2 LABEL VARIANTS

Since the noise introduced by DOM analysis is different for localization and classification as dis-
cussed in Section 3.2.2, it is reasonable to investigate different labeling variations in all stages of
training. This allows to measure the effect of those variants seperately. In this section, the naming
of these variations is introduced.

4.2.1 Binary

As stated in Section 3.2.2, class labels and locations obtained by DOM analysis are often limited.
As both introduce different noise, generalizing to a single class can be considered being an easier
task than additionally trying to learn noisy class labels. This class is called Interactable. In this
single-class detection task, only the localization of potential GUI elements is learned.

4.2.2 Multilabel

Training on noisy labels could negatively impact the overall performance due to confusion: If 3
elements are labeled textfields according to DOM analysis, but one should be a button in reality,
the model will learn to consider a button each time it encounters a textfield. Depending on how
noisy the annotation is, this may result in lower confidences and worsen overall recognition.

Additionally, as stated in Section 3.2.2, many elements are localized as such, but the correspond-
ing class is unclear. While a generic unknown class could serve as naive approach, this could
further impact the already existing model confusion.

A simple approach which uses the advantages of binary labeling, but takes different classes into
account, can be created through the introduction of hierarchic classification labels1: Each element
is considered to be an mandatory Interactable, but can additionally be assigned another optional
class like Button or Textfield. Additionally, this approach accounts for further sub-classifications.
For example, it allows the introduction of a main Icon class, which further splits into sublasses
like Icon.Arrow or Icon.Close. Furthermore, this allows for an investigation of the effect the class
count has on the overall results.

Three variants of MULTILABEL labeling variants are available:

• DOM-Classes: This is the labeling used for training on LQDOM. It consists of all classes
that were obtained during DOM analysis (see Section 3.2.2 and Appendix C.1). All other
elements such as Text and Icons as well as their respective subclasses are just labeled as
Interactable.

• Main-Classes: Only utilize non-subclasses (see Appendix C.2). Subclasses are just labeled
as their respective parent class (e.g. Icon.Arrow becomes Icon). All classes except Text and

1A network architecture has to support multi-labels for this approach to work. YOLOv3 uses independent logistic
classifiers for class predictions instead of softmax (which is often used as default activation function in the last layer of
neural networks for classification) in order to achieve this. See [9].
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Icon have been included in the pre-training. For most classes except Checkbox-Radio and
Dropdown, plenty of training and validation/test data is available in the HQ data sets (cf.
Appendix C.4).

• 29-Classes: All classes that the HQ data set distinguishes between are used for training.
Many classes may have only few samples, therefore, the classification of those can be ex-
pected to be noisy, which may negatively impact the overall performance. By including this
experiments, this impact can be estimated. This measurement can also be an indicator if
including weak/noisy estimations for additional classes during a pre-training might harm
the prediction quality of already included classes.

4.3 MULTI-STAGE TRAINING - COMBINING WEAK SUPERVISION

AND TRANSFER LEARNING

Deep neural networks used for object detection achieve State-of-the-Art results on large object
detection data sets such as the COCO data set. The concept of the training process is to combine
the advantages of both Weak Supervision and Transfer Learning in a pipeline (cf. Figure 3.1) in order
to reduce the amount of required high-quality training data.

The key idea is to pre-train an object detection model on a large amount of data, where labels can
be obtained easily, but may be noisy or incomplete. After the pre-training is done, the model can
be fine-tuned via the use of fewer, but high quality data with manually annotated labels. Instead
of mixing both LQ and HQ data, these steps have to be treated seperately, making use of the
advantages of transfer learning. This leads to a training pipeline with multiple successive steps.

In the case of a GUI element detection task, huge amounts of noisy data can be obtained easily
with the use of web crawling and DOM analysis (cf. Section 3.2.2).

Two types of transfer learning are implemented in the training setups.

The first variant is the usage of weights pre-trained on LQDOM as described. The weakly su-
pervised training can be directly evaluated using HQv1. This is limited due to the DOM analysis
labeling not following the same principles as described in Section 3.3.1. However, this handicap
applies to all compared weights trained on LQDOM. Therefore, a higher score on HQv1 directly
implies a smaller distance between the predictions after the pre-training and the considered ideal
predictions. The results of the selected LQDOM models are included in Appendix E.

The second variant is the usage of weights pre-trained on the COCO data set. For the network
architectures used, these are publicly available at [u28].

Both variants can be combined as the training on LQDOM can be performed using weights al-
ready pre-trained on COCO.

For the YOLOv3-SPP configuration, the first 81 layers can be used for transfer learning. These layers
perform general feature extraction and include the basic filters pre-trained (cf. Section 2.2.2).
The extracted weights are called partial weights. Later layers are used to perform classification,
therefore the number of weights directly depend on the number of classes. If the number of
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loaded pre-trained weights does not match the current model size, Darknet does not load the
weights and reinitializes the whole network [u33].

As a workaround, a pre-training using Fake Classes can be exploited to prevent the class number
from being changed. By pre-training a model with weights initialized for more classes that are
actually annotated, these classes have zero samples during the pre-training. However, since this
can be exploited for the classes of both pre-training and training on HQv1/v2 to match exactly,
weights from all layers can be preserved. This may impact model performance if too many fake
classes are included. Another drawback of this approach is that for each class/setup combination,
a dedicated pre-training has to be performed.

The multi-stage training process is the seventh and eighth step of the pipeline depicted in Figure
3.1.

4.4 CUSTOM EVALUATION METRICS

With the usage of mAP (see Section 2.3.4) as evaluation metric and the calculation procedure
Darknet utilizes, several problems occur. The first problem is the mAP metric itself: Calculating
the mean of the AP of all classes implies that all classes are treated as equally important for eval-
uation. Due to the hierarchic classification of GUI elements, using the mAP would for example
over-weight specific Icon subclasses: mAP would treat the AP Icon.Arrow.Down equally with Text,
even though the first one is a more specific classification with less samples both in training as in
real world.

Furthermore, the AP is calculated per class as defined in Section 2.3.4. However, in the hierarchic
MULTILABEL labeling, one object has assigned multiple classes. When calculating the AP, the
sample is included in the AP calculation of each involved class. While this behaviour is correct
for each individual class AP, it prevents the correct calculation of other metrics such as the overall
recall based on class-specific recalls or the comparison of different labeling approaches. This is
due to the reason that one occuring object is counted multiple times, depending on how many
classes are assigned (cf. class count table in Appendix C.4).

4.4.1 Selective AP

The described behaviour becomes a problem when comparing the different labeling approaches
defined in Section 4.2. For this reason, custom scores based on the seperate class results are calcu-
lated instead of the default mAP, seperating the AP scores for the main-classes and sub-classes.
With this approach, results of different labeling strategies can be directly compared to each other.

Due to the strong imbalance of class count in the training as well as in the validation and test
sets, several variants of calculating a custom score can be derived. Each variant includes only the
scores of a subset of all classes, allowing a direct comparison of trainings with a different amount
of classes as well as measuring the impact of classes with less samples to the score (Formula 4.1).
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APC(S) = ∑
c∈S

AP50(c) (4.1)

S — : Set of classes to take into consideration

Following this definition, APM can be calculated over the AP scores of the main-classes as de-
fined in Section 3.3.3. With APM, the AP score of Icon subclasses is not taken into consideration.
However, despite Interactable being a main-class, it has been exluded from the APM calculation.
This is due to the reason that every element is considered an Interactable when using the multil-
abel labeling. Including this class would add up to 0.5 to the score even if no other classifications
were predicted. To weight the score towards class recognition instead, the Interactable class is not
included in the score calculation2.

Since most of the main classes are included in the pretraining and these classes are considered
the most important to distuinguish between, this is the main metric for experiments involving
multilabel labelings (Formula 4.2).

APM = APC(c ∈ CMAIN) = ∑
c∈CMAIN

AP50(c) (4.2)

CMAIN — : Main Classes as defined in Appendix C.2, excluding Interactable

For experiments utilizing binary labelings, only AP(Interactable) is available. This score is abbre-
viated as APB and is available for both binary and multilabel experiments.

Sub-classes of multilabel-29classes experiments can be evluated within a seperate metric using the
same principle. The API metric only takes the AP scores of Icon sub-classes into account.

API = APC(c ∈ CIcon.∗) = ∑
c∈CIcon.∗

AP50(c) (4.3)

CIcon.∗ — : Subclasses of Icon (cf. C.4)

4.4.2 Weighted (Selective) AP

The detection of single samples of classes with only a few samples has greater impact when class
AP scores are averaged. Therefore, mAP is biased to strongly overestimate the importance of
classes with less occurrences. In some cases, this can be intended if the detection of all classes is
considered equally important, despite some having fewer samples. The downside is that classes
with a few samples are proned to noisy results due to the even smaller amount of validation/test
set samples for that class. For example, in the validation set of HQv1, only 12 elements of the
class checkbox_radio exist. Missing a single Checkbox_Radio element during test time would have
the same impact as missing over hundred Text elements. However, it can be expected that the
former does not have as much significance for the performance on real-world data outside of the
validation set than the latter has. Therefore, a weighted AP can be taken into consideration to
lower the impact of classes with few samples without entirely neglecting them (Formula 4.1).

2However, the recall still accounts for found elements with unclear classification.
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APCw = ∑
c∈C

AP50(c) ∗ w(c) (4.4)

C — set of classes used for selective AP (see Section 4.4.1)
w — weighting function

The most simple approach is to directly weight elements based on their total occurrence number
in the validation/test set, which biases the score towards classes with many occurrences (Formula
4.5).

APCwo(C) = ∑
c∈C

APC(c) ∗ count(c) (4.5)

C — set of classes
count(c) — total number of samples with class c in the val/test set

The definition of Formula 4.5 can be used in order to implement APMwo(Formula 4.6) and APIwo

(Formula 4.7) that are weighted by the class count.

APMwo = APCwo(c ∈ CMAIN) (4.6)

APIwo = APBwo(c ∈ CIcon.∗) (4.7)

CMAIN — : Main Classes (cf. Appendix C.2), excluding Interactable
CIcon.∗ — : Sub Classes of Icon (cf. Appendix C.4)

4.4.3 Total Recall

When recognizing GUI elements, the overall recall is an important metric as it depicts how many
GUI elements where actually found by the detector. Therefore, it should be observed separately.

For the MULTILABEL labeling strategy as defined in Section 4.2.2, each element may have mul-
tiple classes assigned. However, The calculation implemented in Darknet utilizes TP and FP
summed up over all class-specific recalls to calculate the overall recall. The mean of class-dependent
recalls is being calculated instead of the class-independent recall defined in Section 2.3. This implies
that the more classes an individual element has assigned, the more the detection of this element
impacts the calculated recall. For example, consider a rating star element with the labels (In-
teractable, Icon, IconGroup, Stars). That element is therefore counted as four objects according to
this calculation. This not only distorts the results when including objects with different hierarchy
levels, but also prevents this results from being correctly compared with the BINARY labeling
strategy, which can be used to measure the effect of noisy pretraining (see Section 3.2.2 and chap-
ter 5).

A naive approach is to calculate the overall recall directly from the TP count for the Interactable
class, since in the MULTILABEL (ML) labeling strategy, every element is considered an Inter-
actable). However, it is possible for some elements having only a single class assigned and there-
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fore not being classified as Interactable. This behaviour was observed for at least a few elements
even for the best performing models3.

For a correct calculation of the overall recall, the calculation has been reimplemented by counting
all TP/FP detections instead of using the per-class Darknet implementation. In this implemen-
tation, TP/FP counts are based only on the IoU threshold, not on classification. Therefore, the
class-independent Recall has been implemented seperately. For this, the recall is calculated using
the confidence threshold threshcon f = 0.25 and the IoU threshold threshIoU = 0.5.

RC denotes the recall value according to this calculation.

4.4.4 Comparison of Metrics between Multiple Experiments

For experiments utilizing binary data sets, the calculated score only consists of the Interactable
AP (APB). For experiments utilizing multilabel labelings, the (weighted) main-class AP (APM or
APMwo, see Section 4.4.1 and Section 4.4.2) is calculated.

This has the following implications for comparing experiments with different labeling strategies:

• APB and APM cannot be compared directly between binary and multilabel experiments.

• Comparison between APB from multilabel experiments and APB from binary experiments is
allowed.

• Comparison between recall scores of binary and multilabel experiments is allowed.

• APM for multilabel-29classes also only accounts for main classes, which is intended. This
allows a direct comparison between all multilabel experiments and measuring the degrada-
tion of prediction performance when introducing more classes. For evaluating the sub-class
performance, a dedicated sub-class score can be calculated similarly to the APM. Since no
pre-training data is available for those classes and some sub-classes may only have a few
samples, this is not the focus of the evaluation. This is further discussed in Section 6.1.2.

4.5 MODEL SELECTION PROCESS

As introduced in Section 3.3.2 and 3.6, the FINAL-TEST set is used to measure the final model
performance on unseen data. In order to fulfill this purpose, those experiments have to be done
at the very end of evaluation, only testing final models. This implies that no feedback loop such
as recurring hyperparameter optimization is allowed when testing models on FINAL-TEST. This
includes selecting the best performing model, which has to be performed using the HQ validation
sets instead.

During training, model checkpoints were saved every 1000 iterations, which equals 64,000 trained
images. Each model checkpoint is then evaluated by calculating validation metrics.

3This may be amplified when higher confidence thresholds are applied for all classes.

54



4.5 Model Selection Process

For selecting the pre-trained weigths that are used for transfer learning, the non-weighted mAP
is calculated over all classes that are included in the DOM analysis (see Appendix C.1). More
detailed results of that process are included in Appendix E.

Models trained on the HQ data sets were selected using APMwo. The results of the best perform-
ing models according to this metric are shown for different experiments in the following chapter.
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5 EXPERIMENTS

The main aspect of this chapter is the introduction and interpretation of individual training ex-
periments, while the next chapter covers an overarching result discussion.

Due to the focus of this work, these experiments investigate different data-oriented setups rather
than optimizing hyperparameters such as the learning rate. It is not suitable to test all possible
permutations due to combinatorial explosion and long training times. Therefore, reasonable se-
tups have to been created based on assumptions and expectations. For each setup, results are
displayed in corresponding tables.

Each section first introduces the general idea behind this type of experiment. After that, the
results based on HQv1/FINAL-TEST are shown for each individual experiment. A more detailed
result overview including HQv2 results is included in Appendix E. A graphical overview of all
experiment permutations is depicted in Appendix D.

5.1 NOTATION AND INTERPRETATION OF RESULTS

For each experimental setting, a result table is provided. Each table includes information about
several experiment variations, which consist of training on HQv1/HQv2 (see Section 3.6) and the
three labeling variants binary (BIN), multilabel-mainclasses (MAIN) and multilabel-29classes (29C) as
introduced in Section 4.2.

For each experiment and variation, different result metrics are provided as summarized in Table
5.1. Observing single metrics is limited. The APM is especially noisy due to class imbalance. For
that reason, the APMwo was defined, however this metric is biased towards classes with many
occurrences. The recall RC depicts how many relevant elements were found, but this metric
does not account for the number of false positives. There is an error range for single metric
values, which is discussed in Section 6.2.1. Therefore, multiple metrics have to be considered
per experiment for a differentiated result interpretation. An improvement considering multiple
metrics is a significant indicator for better overall performance.
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Abbreviation Meaning

APB
Binary AP / AP of class Interactable,

Main metric for binary experiment variants

APM
(mean/unweighted) main-class AP.

Equal to mAP considering only main-classes.
Can be noisy, high error range.

APMwo occurrence-weighted main-class AP,
Main metric for evaluating multilabel experiments

RC
Class-independent Recall,

Calculated as defined in Section 4.4.3
Cls Labeling variant (cf. Section 4.2)

Iter
Iteration at which the best model was selected,

1 Iteration equals batch size (64 images)
(cf. Section 4.5)

Table 5.1: Abbreviations used in result tables

Note that in the individual tables below, only HQv1-VAL and FINAL-TEST results are displayed.
Full overview result tables including HQv2-VAL results are shown in Appendix E.

As an example, the term APMwo on FINAL-TEST refers to the occurrence-weighted main-class AP
calculated from the predictions of the selected model on the FINAL-TEST set.

The APM can be noisy due to the heavy class imbalance, which is why APMwo should be used as
main metric for comparing multilabel experiments (see Section 4.4.2). Note that for the validation
results, information leakage has occurred due to model selection (cf. Section 3.3.2). The FINAL-
TEST results depict the performance on completely separated data.

For easier comparison, the difference between each experiment and the corresponding baseline
result is written cursive below the result metrics of each experiment. Positive numbers indicate
that the current experiment performs better than the baseline by the given margin.

5.2 BASELINE - NAIVE TRAINING ON HAND-LABELED DATA

Naive training is utilized as baseline. Training is performed on high quality data sets only and uti-
lizes the default settings defined in Section 4.1.3 without further adjustments. Therefore, weakly
supervised pre-training was not used.

The baseline can be used for measuring the effect of the examined approaches as well as showing
tendencies of different test setups. Since computational resources are limited and large trainings
can take several days of training, the latter can be used to pre-filter setups for the multi-stage
experiments. This avoids combinatorial explosion for both experimentation and evaluation.

Using HQv1, the results of a naive training approach are strongly limited by the few training
samples compared to a bigger training data set. Training settings such as Hyperparameters that
affect the naive training in a positive, negative or neutral way may translate into similar effects
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on the multi-stage approaches as well. However, these effects might be smaller due to the larger
amount of training data used in LQDOM.

The baseline results are depicted in Table 5.2.

TRAIN Cls
HQv1-VAL FINAL-TEST

APB APM APMwo RC APB APM APMwo RC

HQv1
BIN 79.90 - - 83.37 81.70 - - 81.71

MAIN 78.82 59.99 75.40 81.21 80.84 51.41 75.57 78.88
29C 79.88 64.16 76.46 83.17 78.71 60.42 74.54 77.89

HQv2
BIN 83.68 - - 85.32 87.10 - - 84.07

MAIN 83.90 66.10 80.82 85.86 86.79 68.47 82.79 82.89
29C 82.27 67.88 79.30 85.30 86.31 61.39 81.38 84.45

Table 5.2: Naive baseline training without pre-trained weights.

The results indicate that the higher amount of training data in HQv2 increase the prediction per-
formance by ~4-6%, depending on the metric considered. Including more classes in the baseline
tends lower the prediction performance on FINAL-TEST, especially the recall. A higher amount
of training data effectively mitigates this effect.

5.3 COCO PRE-TRAINING

The training on high-quality data sets can be performed using weights pre-trained on COCO as
they are provided in the Darknet repository. Table 5.3 shows the result metrics in relation to the
baseline of the previous section.

TRAIN Cls
HQv1-VAL FINAL-TEST

APB APM APMwo RC APB APM APMwo RC

HQv1

BIN
77.84
-2.1

- - 81.21
-2.2

81.22
-0.5

- - 80.67
-1.0

MAIN
79.05
+0.2

60.77
+0.8

76.14
+0.7

82.00
+0.8

82.11
+1.3

58.98
+7.6

77.45
+1.9

81.05
+2.2

29C
79.13
-0.8

64.56
+0.4

75.78
-0.7

81.64
-1.5

79.52
+0.8

61.59
+1.2

75.32
+0.8

79.23
+1.3

HQv2

BIN
83.54
-0.1

- - 86.52
+1.2

86.63
-0.5

- - 85.12
+1.1

MAIN
82.94
-1.0

66.02
-0.1

79.93
-0.9

86.54
+0.7

87.94
+1.1

71.67
+3.2

83.64
+0.8

86.48
+3.6

29C
82.06
-0.2

72.59
+4.7

79.62
+0.3

86.04
+0.7

88.05
+1.7

76.38
+15.0

84.45
+3.1

86.62
+2.2

Table 5.3: Training using partial COCO-pre-trained weights.

Considering the prediction performance on FINAL-TEST, utilizing weights pre-trained on a generic
object detection data set leads to a quite consistent increase in prediction performance.

59



Chapter 5 Experiments

5.4 BINARY PRE-TRAINING

As introduced in Section 2.2.1, the pre-training on LQDOM lies within two types of weak super-
vision. As some elements may not be found by the DOM analysis, it is incomplete supervision.
Additionally, class labels as well as bounding boxes of may be incorrect, therefore it is inaccurate
supervision. As there might be performance differences depending which type of noise is present,
it is suitable to measure the effects of a binary pre-training where class labels are discarded and
all elements are just labeled as Interactable. By testing the two-stage pipeline with a binary pre-
training, the effect of noisy class labels in LQDOM can be measured.

Using multilabel labelings in the second stage, the lower noise of the binary pre-training is utilized
before introducing distinct classes in the second stage. While the pre-training can be expected
being more consistent than a multilabel pre-training, distinction between the different classes
had to be learned using only the data provided in the second stage.

TRAIN Cls
HQv1-VAL FINAL-TEST

APB APM APMwo RC APB APM APMwo RC

HQv1

BIN
85.99
+6.1

- - 86.86
+3.5

85.74
+4.0

- - 84.50
+2.8

MAIN
82.20
+3.4

64.56
+4.6

79.01
+3.6

85.17
+4.0

84.25
+3.4

58.47
+7.1

78.48
+2.9

83.66
+4.8

29C
82.39
+2.5

67.01
+2.9

79.05
+2.6

84.60
+1.4

81.61
+2.9

57.52
-2.9

76.91
+2.4

81.07
+3.2

HQv2

BIN
84.80
+1.1

- - 87.26
+1.9

87.12
+0.0

- - 85.89
+1.8

MAIN
84.47
+0.6

69.40
+3.3

81.25
+0.4

87.37
+1.5

88.68
+1.9

65.87
-2.6

83.90
+1.1

87.67
+4.8

29C
82.81
+0.5

69.16
+1.3

79.99
+0.7

86.05
+0.8

87.17
+0.9

71.43
+10.0

82.81
+1.4

85.42
+1.0

Table 5.4: Results of trainings using partial binary pre-training weights as described in Section 4.3.

Binary pre-training leads to a significant increase in the overall performance compared to the
baseline. It outperforms the COCO pre-training if less training data is available.

The results depict the positive effect of pre-training on a huge amount of data compared to the
naive approach, which is visible across the metrics. Possible negative effects of noisy pre-training
are not visible in the results. The largest increase is visible for APB and RC of the binary experi-
ments.

In transfer learning experiments with a varying class count in the second stage, only a fraction of
the pre-trained weights can be utilized as described in Section 4.3. Since both binary pretraining
and binary HQ training use a single Interactable class, the class count remains the same. Therefore,
when using binary pre-training as well as binary labeling in the HQ training, the full pre-trained
weights can be utilized. The impact of using all pre-trained weights over using only a fraction
can be measured by testing both variants.
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TRAIN Cls
HQv1-VAL FINAL-TEST

APB APM APMwo RC APB APM APMwo RC

HQv1 BIN
87.60
+7.7

- - 88.14
+4.8

86.67
+5.0

- - 85.79
+4.1

HQv2 BIN
85.09
+1.4

- - 87.37
+2.1

88.89
+1.8

- - 87.28
+3.2

Table 5.5: BIN-AP on HQv1/v2 and final test set (binary) using binary pre-trainings. This variation utilizes
all layers of the pre-trained model.

As depicted in Table 5.5, the positive effects on APB and RC on FINAL-TEST are further amplified
by utilizing the full pre-trained weights considering the HQv1 training. However, the results are
strongly diminished for the larger HQv2 training.

5.5 MULTILABEL PRE-TRAINING

In this setup, a pre-training including MULTILABEL-DOMCLASSES (cf. Section 4.2.2 and Ap-
pendix C.1) is used. Since the multilabel format labels elements hierarchically and every element
is an Interactable, it can be expected that confusion caused by noisy class labels only affects the
other classes, not the labeling of Interactable itself. This incidates that even if the model is highly
unsure whether an object of a specific class is detected, it can still be marked as Interactable, which
provides the same recall advantages as the binary pretraining. Additionally, distincting between
the provided classes is already pre-learned.

The multilabel labelings can take advantage of both more-stable Interactables as in the binary pre-
training while still utilizing all class information learned, even if these introduce additional noise.
As only some classes were annotated by the DOM analysis, the class count is different. Therefore,
Transfer Learning has to be performed using extracted partial weights, including the weights of
the first 81 layers of the pre-trained model. The results are depicted in Table 5.6.

TRAIN Cls
HQv1-VAL FINAL-TEST

APB APM APMwo RC APB APM APMwo RC

HQv1

BIN
86.33
+6.4

- - 86.05
+2.7

86.93
+5.2

- - 85.34
+3.6

MAIN
84.04
+5.2

66.08
+6.1

80.79
+5.4

85.08
+3.9

83.81
+3.0

62.12
+10.7

79.41
+3.8

82.63
+3.8

29C
82.13
+2.2

66.2
+2.0

78.4
+1.9

83.80
+0.6

83.77
+5.1

66.69
+6.3

79.12
+4.6

82.17
+4.3

HQv2

BIN
84.73
+1.0

- - 87.04
+1.7

88.40
+1.3

- - 85.45
+1.4

MAIN
84.68
+0.8

72.46
+6.4

82.23
+1.4

87.62
+1.8

88.43
+1.6

70.97
+2.5

84.39
+1.6

87.24
+4.3

29C
84.33
+2.1

72.98
+5.1

81.45
+2.2

86.81
+1.5

87.52
+1.2

77.06
+15.7

84.05
+2.7

86.40
+2.0

Table 5.6: Training using partial multilabel pre-trained weights.
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For HQv1, this pre-training consistently outperforms the binary and COCO pre-training. As for
the binary-pretraining, this advantage diminishes if the amount of training data is increased in
HQv2.

As introduced in Section 4.3, a pre-training using fake classes that do not actually exist in LQDOM
can be exploited to utilize all weights for transfer learning. However, a dedicated pre-training
is required that already includes the final class labeling. In contrast to the binary training of the
previous section, the binary experiments are limited to partial pre-training weights as the class
count is different from the pre-training.

Table 5.7 shows the results of main-class trainings using this technique.

TRAIN Cls
HQv1-VAL FINAL-TEST

APB APM APMwo RC APB APM APMwo RC

HQv1 MAIN
84.03
+5.2

68.33
+8.3

80.99
+5.6

85.48
+4.3

84.96
+4.1

66.62
+15.2

80.43
+4.9

83.41
+4.5

HQv2 MAIN
85.55
+1.6

70.86
+4.8

82.87
+2.1

87.60
+1.7

89.87
+3.1

75.73
+7.3

86.29
+3.5

87.60
+4.7

Table 5.7: Training utilizing all weights of a fakemainclasses pre-training.

A dedicated fakemainclass pre-training further increases the performance gain. When all pre-
training weights are utilized, this pre-training performs better than other pre-training variants
even for HQv2.

5.6 COCO- AND MULTILABEL PRE-TRAINING

The multilabel pre-training used in the last Section can also be combined with a COCO-pre-training.
Therefore, this stacked Transfer Learning:

1. Load partial weights pre-trained on COCO as in the experiments of Section 5.3

2. Perform training on LQDOM as in the experiments of Section 5.6, but with COCO weights
instead of complete model re-initialization

3. Train on high-quality data HQv1/HQv2
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TRAIN Cls
HQv1-VAL FINAL-TEST

APB APM APMwo RC APB APM APMwo RC

HQv1

BIN
84.86
+5.0

- - 85.77
+2.4

85.61
+3.9

- - 83.94
+2.2

MAIN
80.85
+2.0

66.18
+6.2

77.75
+2.3

82.51
+1.3

81.13
+0.3

61.45
+10.0

77.30
+1.7

79.98
+1.1

29C
80.56
+0.7

63.74
-0.4

77.57
+1.1

83.14
+0.0

82.66
+4.0

59.82
-0.6

77.79
+3.2

80.3
+2.4

HQv2

BIN
84.61
+0.9

- - 87.31
+2.0

89.25
+2.2

- - 87.20
+3.1

MAIN
83.08
-0.8

71.20
+5.1

80.62
-0.2

85.5
-0.4

87.96
+1.2

75.21
+6.7

84.33
+1.5

85.70
+2.8

29C
83.87
+1.6

69.46
+1.6

80.99
+1.7

86.76
+1.5

87.42
+1.1

71.11
+9.7

83.40
+2.0

85.28
+0.8

Table 5.8: Training utilizing partial COCO-weights + partial multilabel pre-training

TRAIN Cls
HQv1-VAL FINAL-TEST

APB APM APMwo RC APB APM APMwo RC

HQv1 MAIN
82.45
+3.6

67.00
+7.0

79.64
+4.2

84.52
+3.3

85.03
+4.2

68.13
+16.7

80.33
+4.8

84.11
+5.2

HQv2 MAIN
84.29
+0.4

69.69
+3.6

81.16
+0.3

86.99
+1.1

88.97
+2.2

72.35
+3.9

84.73
+1.9

87.60
+4.7

Table 5.9: Training utilizing partial COCO-weights + fakemainclass-multilabel pre-training

The results shown in Table 5.8 and Table 5.8 indicate that stacked pre-training does not further
increase prediction quality compared to the normal multilabel pre-training experiments of the pre-
vious section. While it still improves prediction performance compared to the baseline, the overall
performance is worse compared to the non-stacked multilabel pre-training.

63



Chapter 5 Experiments

64



6 DISCUSSION

This chapter contains an overarching evaluation and interpretations of the experiment results
from the previous chapter. In Section 6.1, the effectiveness of pre-training are discussed with
focus on multilabel-mainclass experiments. Section 6.2 discusses different theoretical and practical
limitations of this work.

6.1 EFFECTIVENESS OF PRE-TRAININGS

As shown in Section 5.6, utilizing a multi-label pre-training is the most effective pre-training, which
outperforms other pre-training variants. The effectiveness can be slightly improved by using fake
main-classes during the pre-training so that all weights from the pre-trained model can be utilized.

How effective a dedicated pre-training is compared to increasing the amount of high-quality data,
can be estimated by comparing the baseline main-class results using HQv2 with the corresponding
multilabel pre-training using HQv1. Both experiments are marked bold in Table 6.1.
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# Iteration
HQv1-VAL FINAL-TEST

APB APM APMw RC APB APM APMw RC
1 10,000 78.82 59.99 75.40 81.21 80.84 51.41 75.57 78.88
2 16,000 79.05 60.77 76.14 82.00 82.11 58.98 77.45 81.05
3 9,000 83.90 66.10 80.82 85.86 86.79 68.47 82.79 82.89
4 8,000 82.94 66.02 79.93 86.54 87.94 71.67 83.64 86.48

5 1,000 84.03 68.33 80.99 85.48 84.96 66.62 80.43 83.41
6 2,000 85.55 70.86 82.87 87.60 89.87 75.73 86.29 87.60

Table 6.1: Comparing multilabel-mainclasses baseline results with HQv1 using multilabel-pretraining.
1: Naive HQv1 training
2: HQv1 training using partial weights pre-trained on COCO,
3: Naive HQv2 training
4: HQv2 training using partial weights pre-trained on COCO
5: HQv1 training using multilabel fakemainclass pre-training
6: HQv2 training using multilabel fakemainclass pre-training
Additionally, the iteration number of the selected best model is included.

For context, HQv1-TRAIN consists of 194 pages/504 training image splits (cf. Table 3.6.2). The
HQv2-TRAIN set consists of 683 pages/1690 training image splits (cf. Table 3.6.3), which is more
than three times this size. Therefore, the pre-training significantly reduces the amount of man-
ually annotated data needed in order to reach a certain level of prediction quality. As a rough
estimate based on the results, including the pre-training might correspond to a naive training
with approx. ~2 - 2.5x the manually annotated data set size1.

The HQv1 baseline results (#1, #2) suffer from the lack of training data compared to HQv2 (#3,
#4), however the pre-training (#5) effectively decreases this gap. On FINAL-TEST, it still does not
reach the APMwo of the naive HQv2 training (#4), but it even outperforms the latter considering
the Recall RC.

Additionally, using a dedicated pre-training results in drastically faster convergence during the
high-quality training. This allows for faster fine-tuning of parameters and experimentation in this
training stage if a pre-training is already available. For future work, this implies that within the
same time frame, more experiments can be completed. This greatly improves the practical viabil-
ity of techniques such as hyperparameter optimization via random search [27], as they require a
large amount of training experiments.

The next section discusses the effectiveness of the pre-trainings on classes that were not included
during pre-training.

6.1.1 Classes not included during Pre-training

The pre-training does not only increase the prediction performance of all main-classes, even if
they were not included during pre-training (cf. Appendix C.1). The difference is clearly visible

1This rough estimate is based on the assumption that there is a diminishing return in terms of the amount of training
data leading to better results. Therefore, a further increase of training data leads to less and less improvements. For more
precise estimates, more experiments with varying data set sizes across different object detection architectures should be
considered.
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even with partial COCO-pre-trained weights, as COCO does not include any GUI element classes.

As Table 6.2 shows, the pre-training siginficantly improves prediction quality for all classes, with
the dedicated pre-training introduced in this work being more effective than using weights pre-
trained on COCO.

Class
HQv1 HQv2

#1 #2 #3 #1 #2 #3
interactable 80.84 82.11 84.96 86.79 87.94 89.87
image 66.29 63.74 72.58 71.95 70.50 76.76
button 60.03 66.50 68.50 73.67 74.75 78.06
textfield 61.98 70.92 83.35 76.07 85.75 85.48
dropdown 19.33 25.98 42.79 32.14 54.71 67.50
checkbox-radio 10.61 38.36 45.68 64.33 53.25 54.45
text 83.30 84.41 86.13 87.64 88.77 90.86
icon 58.34 62.94 67.31 73.51 73.99 76.98
mAP 55.09 61.87 68.91 70.76 73.71 77.50
APMFT 51.41 58.98 66.62 68.47 75.73 75.73
APMw

FT 75.57 77.45 80.43 82.79 83.64 86.29

Table 6.2: Class AP scores for main-class experiments trained on HQv1/HQv2, evaluated on FINAL-TEST.
Note that the mAP includes Interactable, APMFT excludes this class.
#1: Naive training without pre-trained weights
#3: Using partial weights pre-trained on COCO
#3: Using multilabel fakemainclass pre-training

The multilabel-29classes experiments include a variety of additional sub-classes that provide a sig-
nificantly worse data imbalance compared to including only main-classes. The impact on including
those classes is discussed within the next section.

6.1.2 Sub-classes

The effect of different pre-trainings on sub-classes can be estimated by calculating the unweighted
API and occurrence-weighted APIwo metrics that only include the Icon sub-classes (cf. Section
4.4.1). Table 6.3 depicts the API and APIwo results on the validation/test sets considering dif-
ferent pre-trainings. Note that the value fluctuations of API is considered to be comparable to
the noise of the APM metric, as both do not account for the heavy class imbalance. Therefore,
the weighted APIwo has to be observed as a more reliable indicator for prediction performance if
API results are close.
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TRAIN Pre-Training
HQv1-VAL HQv2-VAL FT-VAL
API APIwo API APIwo API APIwo

HQv1

- 28.03 35.35 - - 25.64 42.18
partial COCO 28.38 31.51 - - 24.20 37.68
partial BIN 24.77 34.89 - - 23.61 43.13
partial ML 25.76 32.53 - - 24.50 43.83
partial COCO
+ partial ML 28.82 31.35 - - 25.25 44.31

HQv2

- 26.41 37.44 31.76 45.11 28.81 56.09
partial COCO 36.03 47.54 37.84 48.48 36.14 62.49
partial BIN 28.29 39.77 30.86 41.57 29.93 58.85
partial ML 32.38 44.92 38.96 49.46 33.24 57.52
partial COCO
+ partial ML 34.88 46.97 37.54 48.63 35.90 59.88

Table 6.3: Icon sub-class AP scores using different pre-trainings.

Considering APIwo on FINAL-TEST, the naive training is outperformed by the use of any pre-
training. However, the overall results are consistently mixed. This is due to to multiple reasons.

Including sub-classes heavily amplifies the data imbalance problem as shown in Appendix Table
C.4. For, FINAL-TEST, 1950 out of 9998 elements are Icons, which is 19.5%. Considering these
1950 Icon elements, only 1028 have assigned any sub-class, which is approx. ~ 10% of all elements
in FINAL-TEST. These fraction further splits into 19 sub-classes, which AP scores are measured
using this metric.

Despite sub-class prediction performance not being the focus of this work, the multilabel-29classes
experiments were included in order to measure the impact on the main-class prediction perfor-
mance if more potentially noisy classes are present. The multilabel-29classes labeling includes
all sub-classes considered during labeling, intentionally ignoring the over-annotation (cf. Section
3.3.1).

As the results indicate, including many additional classes tends to lower the overall recall. This
is especially visible when comparing the RC results of the baseline HQv1 experiments tested
on FINAL-TEST (cf. Table 5.2). However, utilizing any pre-training and a higher amount of
high-quality training data as in HQv2 mitigate this effect. Giving these circumstances, including
these sub-classes did not have severe negative impact on the overall performance. Therefore,
sub-classes with sufficient training data and prediction performance may be included in future
models, while others are excluded.

For that reason, the model selection process was based solely on the APMwo metric for multil-
abel experiments, which does only account for main-classes. As API and APIwo were completely
neglected during model selection, this further increases the noise range for the API and APIwo

metrics.

Including classification of many different sub-classes within a single model might not lead to
reliable results. Therefore, expert classification models for certain sub-classes may be considered
in future work. This is discussed in Section 6.2.3 among other limitations related to classification.

68



6.2 Limitations

6.1.3 Summary

Utilizing a dedicated pre-training with a huge amount of automatically obtained and labeled web
page screen shots can significantly improve the performance of GUI element detection even if the
pre-training labels are limited by various factors. This can significantly reduce the amount of
high-quality annotations needed in order to reach a certain level of prediction quality. For the
maximum effect, utilizing pre-trained weights for as many layers as possible is recommended.

The pre-training does have a positive impact even on classes that were not explicitly labeled
during the pre-training. Additionally, it can speed up the training duration for the training on the
high-quality data if the pre-training is already available, which allows for faster experimentation
during that stage.

Including many classes within a single model is practically limited by the strong class imbalance
of different GUI elements. This is one of the limitations of the implemented approach and the
experimental setup, which are discussed within the next section.

6.2 LIMITATIONS

Due to the experimentation setup, metrics and methodology, several limitations have to be con-
sidered. This Section discusses three remaining main obstacles that were observed during con-
ception and evaluation of the approach implemented in this work. There is a statistical error
range that has to be considered when interpreting the experiment results, which is discussed in
Section 6.2.1. This is complemented by a brief discussion of the conceptual metric limitations in
Section 6.2.2. Furthermore, the current implementation is still does not account for all types of
GUIs, which is explored in Section 6.2.4. The Finally, Section 6.2.5 covers limitations introduced
by the flat detection of bounding boxes.

6.2.1 Statistical Error Range

There is a statistical error range that has to be regarded when interpreting results. The purpose
of this section is to introduce a rough estimate of the metric-dependent error range as well as
the impact on the interpretation of results. Whether a certain result is considered within an error
range depends on the metric under consideration as well as the results for other metrics. For this
work, there are two reasons for value fluctuations.

First, due to random weight initialization. The more weights have to be initialized in advance of
the training, the higher the influence of this random factor is. For the baseline training without
pre-trained weights, all weights have to be initialized. When loading partial weights into YOLOv3-
SPP, the first 81 layers are loaded from the pre-trained weights (see Section 4.3). This implies that
only the initialization of the remaining layers differs between the experiment variations using
specific pre-trained weights. If the class count does not change and therefore the full pre-trained
weights can be loaded, no additional weight initialization is performed.
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As this work utilizes many different experiments and two different data set versions, correlations
that are consistently measurable still imply meaningful results. A possible workaround to further
limit this implication is the repetition of experiments, where each set of experiments uses a ded-
icated seed. However, this greatly increases experimental and computational overhead as each
experiment has to be performed multiple times.

The second reason is the model selection process described in Section 4.5. When training a model,
checkpoints are saved every 1000 iterations which are then used in order to evaluate the model
based on the APMwo introduced in Section 4.4.2. As one iteration consists of 64 images2, there is
a notable gap between each evaluation. To account for this, the evaluation frequency can be set
higher. In order to minimize the sum of saved weight file sizes, the calculation of these custom
metrics can be directly incorporated into the training process in future experiments. This also
increases the chance to consistently find model checkpoints with slightly better performance than
previously.

How a certain result should be evaluated also depends on the metric under consideration as well
as the results for the other metrics. The unweighted APM equals the mAP taking only main-
classes without Interactable into consideration. This implies that for APM, every class has the
same relevance. This metric is especially noisy due to heavy data set imbalance. A single false
positive for a specific class AP has greater impact the less samples are available for this class.
Therefore, the unweighted APM is significantly more noise-prone than the weighted APMwo as
miss-classifying a single Checkbox can already have visible impacts.

For APB, APMwo and RC, every object has the same relevance. This implies that these metrics are
generally more stable, which can be expected to result in less fluctuation.

Based on the observations of multiple experiment results, rough estimates of the error range are
±˜5% for APM and ±˜1% for APB, APMwo and RC. The high error range of APM is the reason
why APMwo should be referenced to as the main metric for multilabel experiments. However, as
the latter is biased towards element classes with many occurrences, the APM can still be included
as as additional metric.

For the comparison of two different experiments, values of a single metrics inside these ranges
are not sufficient indication for improvements or deteriorations. However, if these differences
are consistent between multiple experiments of comparable types (such as HQv1/HQv2) and/or
across different metrics, this has to be interpreted accordingly. For very close and mixed results,
this limitation indicates that more experiments are neccessary in future work in order to gain
meaningful results.

6.2.2 Metric Conception

There are conceptual differences between metrics that lead to individual limitations. As an ex-
ample, classes are considered equally important when using APM where elements are treated
equally for APMwo (cf. Section 6.2.1). Therefore, a single metric only depicts a fraction of the
overall prediction performance.

2which is equal to the batch size defined in the network configuration (see Section 4.1.3)
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The metrics used in the evaluation are based on the IoU threshold threshIoU = 0.5 for the defini-
tion of True Positive detections (cf. Section 2.3.2), which is another limitation to consider. Some
use cases of GUI element detection such as GUI code synthesis may require another level of
bounding box reliability as for example interacting with applications. Therefore, a single IoU
threshold does not account equally for all use cases.

Furthermore, the IoU threshold does not give further information about the quality of the bound-
ing box prediction besides exceeding the threshold (Figure 6.1). Counting True Positives based
on the IoU threshold does not acccount for differences in the perceived importance of elements as
well. For example, a small Image is treated as important as a much larger one.

Figure 6.1: IoU might not always reflect the perceived bounding box quality.

To account for these limitations, metrics that use different IoU thresholds and distinct between
elements of different sizes should be considered in future work.

6.2.3 Classification Limitations

In order to make experiments comparable, the main focus of the evaluation was the impact on the
overall prediction quality considering main-classes. However, the annotation process introduced
in Section 3.3 accounts for a variety of sub-classes, especially for the Icon main-class. These are
exclusive to the 29Classes experiments, not comparable to the other experiments and not included
in the pre-trainings as well. Therefore, evaluating and improving these sub-classification results
was not the focus of this work.

As the results indicate, the inclusion of these sub-classes might reduce the overall recall for train-
ing on a smaller data set such as HQv1. Using HQv2 and a pre-training, the inclusion of these
sub-classes do not drastically decrease main-class prediction performance. However, the predic-
tion quality within these sub-classes greatly differs due to the variety of different Icon sub-types
and the strong data imbalance (cf. Section 6.1.2).

For this reason, an adopted two-staged approach can be considered for future work. For exam-
ple, an object detection model can be trained to detect main-classes, while seperate, dedicated
classification models are fully optimized to distinct between specific sub-classes. While the key
idea of this approach is similar to two-staged object detection implemented in algorithms such as
R-CNN, which is explained in Appendix A.3, this has three major advantages.

In contrast to early R-CNN models, the classification model has not to account for hundreds or
thousands of object candidates per image that are no actual objects. The model has still to handle
for example Icon predictions from an object detector that are no real icons. However, the amount
of those false positives is greatly reduced in contrast to R-CNN models which lowers the difficulty
of the classification task.
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The classification would not have to handle all element classes, but only a subset of them such
as the Icon subclasses. This allows for the dedicated creation of more balanced data sets in order
to handle imbalance of real-world data. This also allows for the investigation of other classifica-
tion algorithms and/or models which may perform better, especially considering the lack of data
for some sub-classes. As an example, if an Icon.Arrow is detected, a very simple model could be
used to distinct between the arrow directions. Distincting between arrow directions is not con-
sidered being a hard problem for any modern object detection model. However, the strong class
imbalance between all element types may hinder even simple sub-classes from being recognized
reliably.

While the classification step still needs additional time for computation and therefore affects over-
all performance, this impact is greatly reduced compared to R-CNN runtimes (cf. Appendix A.3)
for two main reasons. First, as already stated, the classification is only needed for a subset of all
classes and elements. Second, depending on the use case, the classification can be implemented
as optional during runtime. As an example, a web crawler using screenshot-based detection of
elements as well as element type predictions for crawling heuristics can be considered. A heuris-
tic based on Icon sub-classes may only be triggered in certain situations or states. Therefore, the
classification of Icon sub-types can performed only when needed, which allows for flexibility and
removes most of the overhead of two-stage prediction.

6.2.4 GUI Type Limitations

Figure 6.2: Switch
Buttons

As explained in Section 3.1, the main focus of this work are web GUIs. More
specifically, GUIs that are similar to most modern web pages. This does not
yet account for elements that may be occur more commonly in other types
of GUIs such as sliders/switches in mobile apps (Figure 6.2).

Besides additional element types, extending the principles to fit for other
GUI types may have to account for other characteristics as well. For example, a model trained
to recognize textfields on screenshots of desktop applications might not recognize textfields on
mobile applications reliably. This behaviour may not be obvious, as textfields in mobile apps
appear very similar to their desktop-counterparts for a human. However, the size of elements in
mobile apps are designed according to the screen size. This results in textfields that may have an
absolute size similar to desktop-counterparts, but the size ratio compared to the entire screen is
different. As stated in Section 3.5, the model input is resized to a fixed resolution. The textbox
stretches over the entire width of the input, where this is not the case for most desktop textboxes.
In edge cases where this occurs, the models have problems recognizing these text boxes as well.
As an example, the Google Chrome Screenshot depicted in Figure 6.4 has two textboxes. The
large textbox on the top of the screen is such an edge case and is not recognized by the models
either. The textbox at the center of this screenshot is recognized normally. As a result, textboxes
in mobile applications are not recognized well.
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Figure 6.3: Top: Mobile Screenshot stretched. The model is not used to textboxes this broad.
Bottom: Same site, but the screenshot is taken from the desktop variant. Textboxes on desktop
do not stretch over the entire screen in most cases.
Image contains arranged Screenshot of [img12]

Figure 6.4: Model prediction of [img8]. The large textbox at the top is not recognized.

Another problem occurs when trying to handle large and dense texts. The crawl that was the
original data source mainly included pages that are strongly structured. Text mainly occurs in
small paragraphs or even just menu entries. Large texts such as long Wikipedia [u34] articles do
not occur frequently. The model does have significant problems if very large texts are present.
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Figure 6.5: Left: Long dense texts causes significant problems for the detector.
Right: Structured, smaller text blocks on the same page are detected as intended.
Image Source: Model Prediction of [img13] using the best HQv2-trained multilabel-mainclasses
model with fakemainclass pre-training

These are just two examples of implications and differences that may occur when testing other
GUI types. To account for these differences, specific data sets for the GUI type in considera-
tion have to be created and/or combined with the existing ones in future work. This includes
the adaptation of class types as well, depending on the use case. Additionally, dedicated data
augmentation of existing data can be considered as well, for example cropping already labeled
screenshots so that textboxes full the entire width.

6.2.5 Tree Structures

The GUI element detection implemented in this work does not include the explicit detection of
visual separators or tree structures of elements as provided by methods like DOM analysis, which
is discussed later in Section 3.2.23. Detecting elements directly allows for a more straightforward
human-like use of results for a variety of tasks like automated interaction, while allowing a higher
independence of underlying technology. Tree structure estimations based on a screenshot of the
rendered GUI without access to the underlying data structure can be ambiguous (Figure 6.6).
Direct detection of rendered elements circumvents this problem, which facilitates data annotation
and generalization for different types of GUI technology as well. The atomic labeling principle (cf.
Section 3.3.1) slightly accounts for layered structures, which may already be sufficient for a range
of applications.

However, if a full tree of rendered elements is required, using at least a combination with a debug-
ging interface such as Selenium might be more suitable than purely visual detection, since it does
not have to be used exclusively. This also allows to leverage the advantages of both approaches,
while bypassing individual limitations such as outlier-sensitivity discussed in Section 6.2.

Detecting structures is also possible based on bounding box results, using algorithms such as Box
Clustering Segmentation[28], which has been developed for that purpose.

3Detection of visual separators will however be learned implicitly by the object detection network.
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Figure 6.6: The detection of deeply hierarchical structures is especially difficult and in some cases ambigu-
ous based on visual detection only.
Left: Excerpt of TU Dresden Web Page [img14].
Right: TU Dresden web page rendered by Microsoft Edge DevTools 3D DOM View Proto-
type [u35].
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7 CONCLUSION

Considering the results and the limitations discussed in the previous chapter, the final chapter
concludes this thesis. For that, Section 7.1 provides a brief overview about related work and sets
this thesis in context. Based on that, Section 7.2 gives an outlook for future work. The last Section
7.3 provides as final summary of this thesis.

7.1 RELATED WORK

GUI element detection is the application of object detection for GUI elements. Therefore, a variety
of common object detection algorithms and techniques such as the already mentioned R-CNN [4,
5, 6] and YOLO [7, 8, 9] architectures are directly related to this task. As deep learning based
models evolve rapidly, newer or improved architectures release regularly such as YOLOv4 [29],
EfficientDet [30] or SpineNet [31].

Due to the amount of research in the area of object detection and deep learning in general, it can
be difficult to keep track with the constantly released and updated techniques. Even though they
might be incomplete, online sources such as [u36] may provide substantial help for getting an
rough overview about state-of-the-art techniques. The COCO data set [10, u3] is the current main
benchmark for common object detection techniques.

Other paradigms (cf. Section 2.2) might also be considered in the context of the GUI element
detection class imbalance problem. For example, Active Learning [32] aims to actively estimate
which samples should be included to improve the model the most. The semi-supervised method
Pseudo-Labeling [33] leverages additional unlabeled data by training a model on its own predic-
tions.

YOLO9000 [8] proposed a mechanism for training hierarchic classifications. The WordTree ap-
proach calculates a tree of probabilities via multiple softmax (cf. Figure 2.8) calculations. To spec-
ify the final class, the tree is traversed from the root along the highest confidence path. For the
data sets of this thesis, the root node would be Interactable. The child notes for Button, Image and
other classes would then represent the conditional probabilities Pr(Button|Interactable) et cetera.
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The classification loss is only backpropagated at the level of the provided class and above. For
example, the classification loss for an (non-subclass) Icon would just be backpropagated for Icon
and Interactable, but not Icon.Search. Compared to the multilabel approach for hierarchic classifica-
tion, this ensures that any node of the tree is also classified as its predecessor. This is not always
the case when using multilabel classification (cf. Section 4.4.3). For example, some elements that
should be classified as (Interactable, Image) may just have the Image class assigned. However, this
might be easily fixed in post-processing. In contrast, the multilabel approach allows classifications
such as (Interactable, Image, Text) for logos as well, which is not possible using softmax as both
Imageand Text would be on the same level of the tree.

Figure 7.1: WordTree utilizes multiple softmax calculations. To determine the predicted class, they traverse
along the class hierarchy along the nodes with the highest predicted confidence. The final class
probability can then be calculated by multiplying the confidences to conditional probabilities.
Image Source: [8]

The comparison of the multilabel pre-training experiments of Section 5.5 and the stacked pre-
training of Section 5.6 indicates that the latter has a worse overall performance. Zoph et al. [31]
found that if a pre-training is utilized, strong data augmentation or a high amount of labeled
data in the second stage not only result in diminishing effects of the pre-training. They may even
decrease the final prediction performance by about 1% AP. Since the LQDOM pre-training used
in this work already includes a huge amount of training data (cf. Section 3.6.1), this effect may be
an explanation for the results of the stacked pre-training experiments.

As mentioned in the introduction, detecting GUI elements based on visual detection may support
different software engineering tasks. Therefore, a variety of approaches have been explored in the
literature that directly cover GUI element detection or related problems.

Box Clustering Segmentation[28] aims to detect structures on web pages based solely on bounding
box inputs. Clustering bounding boxes may for example be used to detect headers, menus or
other groups of elements that belong together visually.

REMAUI [1] and Pix2Code [2] recreate GUIs based on screenshots. However, they are mostly
evaluated on simple and artificial GUIs (Figure 7.2).
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Figure 7.2: Example GUIs used in pix2code. Image Source: [2]

A recently published study by Chen et al. [34] covers the application of different approaches on
the Rico data set [13], which is a data set containing screenshots as well hierarchic GUI information
and meta data of over 9,000 mined Android applications.

The study compares the performance of several traditional computer vision approaches for de-
tecting and classifying regions as well as deep learning-based object detectors such as YOLOv2/v3.
They conclude that deep learning based methods significantly outperform traditional computer
vision algorithms for detecting the regions of non-text GUI elements, but often fail to predict very
precise bounding boxes and may need lots of training data. The traditional algorithms such as
REMAUI [1] had problems regarding more complex GUIs. The detected element regions of the
tested traditional algorithms were mostly noise. However, if they detected True Positives, the pre-
dictions were quite accurate. The performance of deep learning based algorithms significantly
dropped for higher IoU thresholds such as threshIoU = 0.9. Very high bounding box accuracy
might be neccessary for some use cases such as GUI code synthesis.

They also observed that the classification of elements is challenging due to GUI elements hav-
ing large in-class variance and high cross-class similarity. For example, the ToggleButton samples
depicted in Figure 7.3 can be very similar to the ImageButton samples. Distuinguishing between
those often requires implicit knowledge about the implementation or functionality of these icons.
What distinguishes a ToggleButton from a regular ImageButton is the toggling functionality. Based
only on a screenshot without the ability to validate the assumption through interacting, this may
be hard to determine for humans as well in some cases. In this thesis, this problem was addressed
by utilizing a hierarchic classification scheme where element classes were defined by visual prop-
erties only (cf. Section 3.3.1) as well as multilabel classification. In that example, the ToggleButton
may just be implemented as a sub-class of ImageButton or Icon to allow a more robust and flexible
classification.
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Figure 7.3: Class examples from [34] based on the Rico data set [13]. Samples may significantly vary within
a class, while classes can be very similar. Image Source: [34]

Another aspect of the study was the question if text and non-text elements should be detected
seperately. They conclude that neither OCR techniques nor object detection models such as YOLO
can reliably detect GUI text and that scene text recognition algorithms such as EAST [35] are
needed.

In this work, significant problems regarding large texts were observed. Text scene recognition
algorithms such as EAST may achieve better recognition of Text elements and solve the problems
with large texts. However, good results were achieved on smaller structured text blocks (cf. Fig-
ure 6.3) and therefore the majority of text elements in the utilized data sets (cf. Table 6.2). This
indicates that a seperation is not neccessary for all use cases if only small text blocks appear.

They also proposed a combined algorithm that uses a traditional algorithm for object localiza-
tion using a top-down coarse-to-fine strategy. This greatly improves the bounding box quality
compared to object detection models and does not need training data. For the localization text el-
ements, EAST is utilized. All other non-text elements are classified by a neural network for image
classification.

The proposed algorithm is shown to outperform other techniques for theshIoU = 0.9 significantly
on the Rico data set. However, the performance considering a more tolerant IoU theshold which
may be sufficient for other use cases as well as the performance on other types of GUIs remain
open. To account for these differences, variations of the AP metric can be used that average over
different IoU thresholds or treat objects of different sizes seperately [23]. This can be addressed in
future work, which is discussed in the final Section.

7.2 OUTLOOK - FUTURE WORK

With the study referenced in the last Section being released very recently, a direct comparison
of the proposed algorithm with the model of this thesis may be considered. Using HQv1-VAL,
HQv2-VAL and FINAL-TEST, for example recall and speed of both techniques could be directly
compared considering different IoU thresholds.

To improve the classification of GUI elements, hierarchic labeling may be further explored. For
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7.3 Summary

distinguishing between certain sub-classes, lightweight expert models can be implemented. This
may also help handling the heavy class imbalance problem. For example, it can be considered that
a powerful, harder-to-train deep neural network may not be neccessary in order to distuinguish
between certain sub-classes such as different Icon.Arrow types.

Another possibility of improving the classification considering the class imbalance is the imple-
mentation of additional paradigms such as Active Learning or Pseudo-Labeling that were mentioned
in the last section. This may be combined with domain- or technology-specific techniques such as
DOM analysis in order to more efficiently leverage crawled GUI data.

As object detection algorithms evolve rapidly, the performance of other architectures mentioned
in the previous section might be evaluated using the existing techniques.

To further improve deep learning based models, data from different GUI types should be in-
cluded. Training and evaluating based on a single data source or GUI type results in GUI type
limitations such as the problems discussed in Section 6.2.4. In order to achieve true platform-
independent recognition of common GUI elements, combining different data sources and/or data
sets as well as metrics is highly recommended.

7.3 SUMMARY

Considering the variety of different GUI designs and technology, the detection of arbitrary GUI
elements remains a challenging task.

The application of state-of-the-art deep learning based object detection algorithms requires a huge
amount of training data. This thesis contributes by lowering the amount of manually annotated
high-quality training data needed to achieve a certain prediction quality.

It is shown that leveraging automatically obtained, non-perfect annotated GUI data from easily
accessible sources can lead to notable improvements for deep learning based GUI element detec-
tion. A dedicated pre-training using is more effective than pre-training on generic object detection
data sets, even if both bounding box and class label quality is limited. This is especially effective
if little high quality-labeled data is available.

Additionally, the use of hierarchic element class definitions based solely on visual properties as
well as multi-label classification are introduced. This allows for flexible classification which can
be easily extended to account for other element types as well as the implementation of sub-type
specific expert models in future work.
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Appendix A Glossary

A.1 ABBREVIATIONS

Abbreviation Meaning Section
AI Artificial Intelligence A.2

AP
Average Precision,
Area under Precision-Recall Curve

2.3.4

APB
AP of class Interactable,
Main metric for binary experiment variants

4.4.1

APM
(mean/unweighted) main-class AP.
Equal to mAP considering only main-classes.
Can be noisy, high error range.

4.4.1

APMwo occurrence-weighted main-class AP,
Main metric for evaluating multilabel experiments

4.4.2

Cls Labeling variant 4.2

R-CNN
Regions with CNN features
(Object Detection Architecture)

A.3

COCO
Common Objects in Context,
Reference object detection data set[10, u3]

7.1

DOM Document Object Model 3.2.2
FN False Negative 2.3.2
FP False Positive 2.3.2
GUI Graphical User Interface 3.1
HQv1/v2 High-Quality Data Set v1/v2 3.3
IoU Intersection Over Union 2.3.1

Iter
Iteration at which the best model was selected,
1 Iteration equals batch size (64 images)

4.5

LQDOM
low-quality DOM-labeled data set,
automatically obtained by
web crawling and DOM analysis

3.2

PR-curve Precision-Recall curve 2.3.4
RC Class-independent Recall 4.4.3
TP True Positive 2.3.2
threshcon f Confidence Threshold 2.3.2
threshIoU IoU Threshold 2.3.2

YOLO
You Only Look Once
(Object Detection Architecture)

2.4
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A.2 Machine Learning

A.2 MACHINE LEARNING

Machine Learning is a part of Artificial Intelligence (AI). The term sums up different approaches,
methods and algorithms that address the automated recognition of patterns and regularities in
order to automatically evaluate new, unseen samples of data.

Training

For supervised learning, given data set DTRAIN , the objective is to find a function f that approxi-
mates fGroundTruth(x) = y, (x, y) ∈ DTRAIN as accurately as possible.

This is achieved through step-wise minimization of a loss function (see A.2). In the case of neural
networks, this is mainly done by adapting weight factors wi. The step-wize adaptation of f is
called Training.

The approximation f is also called model.

A training cycle over the entire training data set is called Epoch. Normally, a training of neural
networks consists of many epochs.

If the loss of a model further and further approximates the optimal value as training progresses,
this is called Convergence. If for example Hyperparameters are set badly, it is possible for the model
not to converge (or even diverge).

Validation and Testing

After training an estimator f trained on DTRAIN , f is evaluated using DVAL by calculating specific
metrics. DVAL includes labeled ground truth samples (even when training unsupervised) on input
data not used during training. This is called validation.

To prevent information leakage (cf. Section 3.3.2) it is also common to hold back extra data that is
evaluated last when all experiments are finished and models are selected. The held back data is
called Test Set.

A common approach to determine the training duration is to monitor a target validation metric
through frequent validation and stop the training if the validation score did not increase anymore
after a certain duration, which is often a defined amount of epochs. This technique is called Early
Stopping.
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Loss

The loss function, which is sometimes called cost function, is a function for estimating the model
error. The main objective of model training is the minimization of the loss function1.

An example is (Mean) Square Error (Formula A.1).

(M)SE( f ) = (
1
N
)

N

∑
i=1

(yi − f (xi))
2 (A.1)

x — : input data/"features"
y — : label corresponding to x

f (x) — : model prediction
N — : number of samples in D (data set size)

Note that object detection networks such as YOLO have own sophisticated loss functions, which
are not covered by this work.

Hyperparameter

Parameters that directly influence the training algorithms itself like the Learning Rate are called
Hyperparameter.

The step size used in Gradient Descend is called Learning Rate. It is a scalar the magnitude of
the gradient is multiplied with before adapting the weights. If the Learning Rate is set too small,
steps taken in the process of Gradient Descend are too small which leads to slow convergence
and not being able to escape from local minima. If it is set too high, it is possible to overshoot
global minima. Optimization techniques like Adam make use of dynamic Learning Rates which
are adapted during the training process for each single weight.

A.3 R-CNN

Detecting arbitrary objects in images depicts a hard challenge in computer vision. Before the
release of the R-CNN algorithm in 2014[4] state-of-the-art algorithms consisted of ensembles of
models, utilizing low-level features in combination with higher-level context. The usage of CNNs
suffered from the fact that the number of objects to recognize in an image is unknown, while
the number of output neurons in the final fully connected layers had to be fixed. The R-CNN
algorithm solved this by generating a fixed number region proposals and feeding the cropped
image of each proposal into a CNN.

1In contrast, a metric like AP is designed to be interpreted by humans, not to have properties that are suited for opti-
mization problems.
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A.3 R-CNN

Figure A.1: R-CNN algorithm. Source: [4]

As shown in Figure A.1, the R-CNN algorithms consists of these main steps:

1. Input Image: Read image data and perform pre-processing (e.g. rescaling).

2. Region Proposals: A total of 2000 region proposals was generated. Note that in contrast to
later architectures, R-CNN used a conventional computer vision algorithm (selective search)
in order to generate region proposals.

3. Feature Extraction: Using a Convolutional Neural Network, the features of each proposal
are extracted

4. Classification: Classify each feature vector by using class-specific linear Support Vector Ma-
chines (SVMs).

However, this approach had some disadvantages:

• The region proposals being generated by a fixed algorithm prevents it from using the ad-
vantages of machine learning at this stage

• This disadvantage further worsens since the object classification is completely dependend
on the localization. Furthermore, no context beyond the provided crop can be utilized.

• High computational cost in order to process one image. Due to the CNN being used on each
single region proposal as a crop, an R-CNN pass of one input image equals the runtime of
2000 image predictions of the CNN plus the runtime of the other steps. Therefore, it is
not suited for real-time usage. The first version of the R-CNN needed almost 50 seconds
runtime on a Nvidia K40 GPU in order to process a single image [5].
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B DOM ANALYSIS FILTERS

These filters were applied for labeling elements using Selenium and DOM analysis. The filters
are notated in Pseudo-Logic. Functions that access node information were implemented using
Selenium. For each element/node provided by the DOM, the Filter() function is evaluated based
on the properties of the element. If the function evaluates to true, the element is included as
Interactable. Otherwise it is discarded.

Each function that checks for an element property is applied to the element currently filtered. For
example, IsDisplayed() should be read as IsDisplayed(currentElement), which has been shortened to
improve readability.

The notation Condition → Class indicates that the element is additionally labeled as Class if
Condition is fulfilled and Filter() becomes true.

Note that this implementation existed prior to this work and has been included for better com-
prehensibility and reproducibility.
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Appendix B DOM Analysis Filters

Filter():

IsDisplayed()

∧ ((AreaGreaterThan(200)

∧WidthInPercentO f Screen < 50

∧ ¬HasTag(option) ∧ ¬HasTag(optgroup)

∧ (labelFilters() ∨ anonymousFilters()))

∨ IsCheckbox()

∨ IsRadioButton())

AnonymousFilters():

HasTag(button)

∨ HasTag(input)

∨ (HasTag(a)

∧ (HasImageChild()

∨ HasText()

∨ HasCssContent())

∧ ¬HasBiggerMarkedChild())

∨ HasBackgroundImage()

LabelFilters():

¬ContainsAttributeValues(class, [wrapper])

∧ (100 < Area() < 15000)

∧ (IsButton()→ Button

∨ IsText f ield()→ Textfield

∨ IsImage()→ Image

∨ IsCheckboxRadio()→ CheckboxRadio

∨ IsDropdown()→ Dropdown

∨ IsMisc()
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IsButton():

((ContainsAttributeValues([class, button, Button, btn, Btn, control])

∨ HasTag(button)

∨ (HasTag(input) ∧ HasAttributeValues(type, [submit]))

∨ HasTag(svg))

∧ ¬HasTag(div)

∧ ¬HasEnclosingMarkedParent()

∧ ¬IsRadioButton()

∧ ¬ContainsAttributeValues(class, [buttons, Buttons, btns, Btns])

∧ ¬HasAttributeValues(type, [submit, text, password, email, search, username])

IsTextfield():

HasTag(input)

∧ (ContainsAttributeValues(type, [text, password, email, search, username, f orm, f ind])

∨ ContainsAttributeValues(class, [search, input, f orm, f ind]))

∨ HasAttributeValues(type, [text, password, email])

IsImage():

HasTag(img) ∨ HasTag(svg)

∧ Area() > 1500

IsCheckboxRadio():

HasTag(input)

∧ (HasAttributeValues(type, [checkbox])

∨ HasAttributeValues(type, [radio])

∨ HasAttributeValues(role, [radio])

IsDropdown():

(ContainsAttributeValues(class, [select])

∨ ContainsAttributeValues(class, [dropdown])

∨ HasTag(select)

∨ HasAttributeValues(type, [radio])

∨ HasAttributeValues(role, [radio]))

∧ ¬ContainsAttributeValues(class, [selected])

∧ ¬HasMarkedParent()

IsMisc():

HasOwnText()

∨ HasTagCheckParentAlso(a)

∨ HasTagCheckParentAlso(li)
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The additional functions described in Table B.1 are implemented using Selenium [u18] and the
JSoup Java HTML Parser [u37].

Function Explanation
IsDisplayed() Checks if the element is displayed (Selenium)
Area() Calculates the area of the current element
WidthInPercentOfScreen() Calculates the element width relative to view port

size
HasTag(a) Checks if the DOM element has the tag <a>
HasTagCheckParentAlso(a) Checks if the current element or its parent element

has the tag <a>
HasImageChild() Checks if the element has a child node that has an

<image> or <svg> tag
HasText() Checks if the element has text (JSoup)
HasCssContent() Checks if the element has the CSS value content
HasBiggerMarkedChild() Checks if the element has a child element that ful-

fills Filter() and has a bigger size than the current
element

HasBackgroundImage() Checks if the element has the CSS value background-
image and if it is neither None nor empty

ContainsAttributeValues(a, [b,c, ...]) Checks if the element attribute string a contains at
least one of the strings b, c, ...

HasAttributeValues(a, [b, c, ...]) Checks if the element has the attribute a that has one
of the values b, c, ...

HasMarkedParent() Checks if the element has a parent element that ful-
fills Filter()

HasEnclosingMarkedParent() Checks if the element has a parent element that ful-
fills Filter() that visually encloses the current ele-
ment

HasOwnText() Checks if the node has a direct successor node that
contains text

Table B.1: Additional functions that access element properties. These functions where implemented using
the Selenium and JSoup Frameworks.
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C CLASSES

C.1 DOM-CLASSES

These classes were included in the DOM analy-
sis to create LQDOM prior to this work:

Interactable
Image
Button
Textfield
Dropdown

C.2 MAIN-CLASSES

The following classes are defined as Main
Classes, which have been identified as the most
atomic classes most webpages can be segmented
into:

Interactable
Image
Button
Textfield
Dropdown
Checkbox-Radio
Text
Icon

C.3 ALL CLASSES AND SUB-

CLASSES

Interactable
Image
Button
Textfield
Dropdown
Checkbox-Radio

Checkbox
Radiobtn

Text
Icon

Search
Close
Arrow

Down
Up
Left
Right

Menu
PlayVideo
Flag
ShoppingCart
SocialMedia
PlusMinus

Plus
Minus

Comment
IconGroup

GalleryDots
Stars

Note: Some logos can be both "Image" and "Text".
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C.4 CLASS COUNT OVERVIEW

Table C.1 includes detailed size information for all data sets.

Class LQDOM HQv1 HQv2 FINAL-TEST
TRAIN TRAIN VAL TRAIN VAL TEST

interactable 8,905,452 22,233 5,579 72,552 18,644 9,998
image 894,218 2,723 670 9,091 2,181 815
button 351,755 1,081 321 3,607 9,04 329
textfield 102,126 209 69 773 194 75
dropdown 82,904 146 25 243 98 26
checkbox-radio 27,002 142 12 219 103 53

.checkbox - 103 12 0 0 45

.radio - 33 0 0 0 8
text - 15,197 3,746 46,358 12,686 6,716
icon - 2,614 724 8,864 2,447 1,950

icon.search - 125 42 390 111 49
icon.close - 63 26 227 65 25
icon.arrow - 723 169 2,316 640 568

.down - 279 61 893 255 147

.up - 20 10 34 26 36

.left - 66 12 164 49 32

.right - 358 86 1,225 310 347
icon.menu - 24 12 88 22 23
icon.playvideo - 100 26 350 87 23
icon.flag - 8 6 21 13 0
icon.shoppingcart - 30 9 82 30 28
icon.socialmedia - 401 139 1,586 349 220
icon.plusminus - 72 13 153 79 41

.plus - 52 12 81 60 33

.minus - 20 1 72 19 5
icon.comment - 28 5 137 25 6
icon.icongroup - 186 25 431 163 45

.stars - 130 19 316 120 25

.gallerydots - 59 6 101 46 20

Whole Page Count 93896 194 50 683 161 65
Split Count 229755 504 127 1690 411 215

Table C.1: Class Count Overview

94



D EXPERIMENT PERMUTATIONS
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Appendix D Experiment Permutations

D.1 YOLOV3-SPP DEFAULT

PRESET WITHOUT COCO

WEIGHTS

experiments
naive

HQv1
binary
multilabel

mainclasses
29classes

HQv2
binary
multilabel

mainclasses
29classes

DOM-pre-binary
HQv1

binary
multilabel

mainclasses
29classes

HQv2
binary
multilabel

mainclasses
29classes

DOM-pre-multilabel
HQv1

binary
multilabel

mainclasses
29classes

HQv2
binary
multilabel

mainclasses
29classes

DOM-pre-multilabel-fakemainclasses
HQv1

multilabel
mainclasses

HQv2
multilabel

mainclasses

D.2 YOLOV3-SPP DEFAULT

PRESET WITH COCO

WEIGHTS

experiments
naive

HQv1
binary
multilabel

mainclasses
29classes

HQv2
binary
multilabel

mainclasses
29classes

DOM-pre-multilabel
HQv1

binary
multilabel

mainclasses
29classes

HQv2
binary
multilabel

mainclasses
29classes

DOM-pre-multilabel-fakemainclasses
HQv1

multilabel
mainclasses

HQv2
multilabel

mainclasses
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E EXPERIMENT RESULT
OVERVIEW

This Appendix summarizes the results of the experiments introduced in Chapter 5. It additionally
includes the Iteration(Iter) at which the best performing model has been selected as well as HQv2-
VAL results. The results for training on HQv1 are shown in Table E.1. Table E.2 depicts the results
for training on HQv2. Table E.3 depicts the weight selection results of selecting the pre-training
weights after training on LQDOM.
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Pre-Training Cls Iter
HQv1-VAL FINAL-TEST

APB APM APMwo RC APB APM APMwo RC

-
BIN 10000 79.90 - - 83.37 81.70 - - 81.71

MAIN 10000 78.82 59.99 75.40 81.21 80.84 51.41 75.57 78.88
29C 19000 79.88 64.16 76.46 83.17 78.71 60.42 74.54 77.89

partial COCO
BIN 16000 77.84 - - 81.21 81.22 - - 80.67

MAIN 16000 79.05 60.77 76.14 82.00 82.11 58.98 77.45 81.05
29C 8000 79.13 64.56 75.78 81.64 79.52 61.59 75.32 79.23

partial BIN
BIN 2000 85.99 - - 86.86 85.74 - - 84.50

MAIN 5000 82.20 64.56 79.01 85.17 84.25 58.47 78.48 83.66
29C 7000 82.39 67.01 79.05 84.6 81.61 57.52 76.91 81.07

full BIN BIN 1000 87.60 - - 88.14 86.67 - - 85.79

partial ML
BIN 2000 86.33 - - 86.05 86.93 - - 85.34

MAIN 2000 84.04 66.08 80.79 85.08 83.81 62.12 79.41 82.63
29C 2000 82.13 66.20 78.4 83.80 83.77 66.69 79.12 82.17

fakemain ML MAIN 1000 84.03 68.33 80.99 85.48 84.96 66.62 80.43 83.41

partial COCO
+ partial ML

BIN 4000 84.86 - - 85.77 85.61 - - 83.94
MAIN 8000 80.85 66.18 77.75 82.51 81.13 61.45 77.30 79.98

29C 9000 80.56 63.74 77.57 83.14 82.66 59.82 77.79 80.30

partial COCO
+ fakemain ML MAIN 1000 82.45 67.00 79.64 84.52 85.03 68.13 80.33 84.11

Table E.1: HQv1 training results



Pre-Training Cls Iter HQv1-VAL HQv2-VAL FINAL-TEST
APB APM APMwo RC APB APM APMwo RC APB APM APMwo RC

-
BIN 11,000 83.68 - - 85.32 80.27 - - 82.35 87.10 - - 84.07

MAIN 8,000 82.94 66.02 79.93 86.54 79.78 71.18 77.43 83.41 87.94 71.67 83.64 86.48
29C 8,000 82.27 67.88 79.30 85.3 78.98 70.36 76.76 82.69 86.31 61.39 81.38 84.45

partial COCO
BIN 15,000 83.54 - - 86.52 79.90 - - 83.57 86.63 - - 85.12

MAIN 8,000 82.94 66.02 79.93 86.54 79.78 71.18 77.43 83.41 87.94 71.67 83.64 86.48
29C 9,000 82.06 72.59 79.62 86.04 79.51 73.78 77.59 83.66 88.05 76.38 84.45 86.62

partial BIN
BIN 17,000 84.80 - - 87.26 81.34 - - 84.42 87.12 - - 85.89

MAIN 3,000 84.47 69.40 81.25 87.37 81.09 72.75 78.68 84.46 88.68 65.87 83.90 87.67
29C 8,000 82.81 69.16 79.99 86.05 79.54 70.10 76.47 82.92 87.17 71.43 82.81 85.42

full BIN BIN 1,000 85.09 - - 87.37 82.06 - - 84.62 88.89 - - 87.28

partial ML
BIN 9,000 84.73 - - 87.04 80.96 - - 84.04 88.40 - - 85.45

MAIN 5,000 84.68 72.46 82.23 87.62 80.31 74.06 78.17 83.90 88.43 70.97 84.39 87.24
29C 6,000 84.33 72.98 81.45 86.81 81.02 75.41 78.82 84.18 87.52 77.06 84.05 86.40

fakemain ML MAIN 2,000 85.55 70.86 82.87 87.60 81.82 73.73 79.64 84.54 89.87 75.73 86.29 87.60

partial COCO
+ partial ML

BIN 3,000 84.61 - - 87.31 80.65 - - 84.15 89.25 - - 87.20
MAIN 4,000 83.08 71.20 80.62 85.50 79.15 70.84 77.12 82.17 87.96 75.21 84.33 85.70

29C 10,000 83.87 69.46 80.99 86.76 80.44 73.42 78.44 83.78 87.42 71.11 83.40 85.28

partial COCO
+ fakemain ML MAIN 2000 84.29 69.69 81.16 86.99 80.91 72.99 78.22 83.98 88.97 72.35 84.73 87.60

Table E.2: HQv2 training results



Pre-Training Iter HQv1-VAL HQv2-VAL FINAL-TEST
APB mAP APwo RC APB mAP APwo RC APB mAP APwo RC

BINARY 33,000 67.06 - - 64.14 63.40 - - 60.91 59.76 - - 56.03
MULTILABEL 18,000 65.61 66.08 67.31 62.23 62.43 70.36 64.17 60.08 57.85 56.44 58.11 57.61
MULTILABEL

with COCO weights 25,000 66.15 65.27 67.63 63.74 62.84 69.42 64.43 60.71 59.58 58.74 59.94 57.12

Table E.3: Evaluating LQDOM training using high-quality validation/test sets.

As discussed in Section 4.5, the weights after pre-training on LQDOM are selected by evaluating the mAP result on HQv1-VAL (Table E.3). As there are
many elements for all classes in LQDOM (cf. C.4), the weights can be selected using the unweighted mAP as class imbalance is less important.



F IMAGE APPENDIX

This appendix includes several additional example images for visualization. Appendix F.1 in-
cludes annotated examples.

F.1 ANNOTATION EXAMPLES

Figure F.1: Sample excerpt of annotated web browser GUI for FINAL-TEST. Image Source: [img8]

.
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Figure F.2: Sample excerpt of annotated web page. Image Source: [img15]

.

Figure F.3: Sample excerpt of annotated web page. Image Source: [img16]

.
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F.1 Annotation Examples

Figure F.4: Sample excerpt of a more complex annotation. Image Source: [img17]

.
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F.2 MODEL PREDICTIONS

This section includes several example predictions using the best performing model trained on
HQv2 with fakemainclass pre-training. Figures F.5, F.6 and F.7 depict web pages. Figure F.8 includes
the web browser itself. Figures F.9 and F.10 depict other desktop applications.

Color codes: Just Interactable (unknown class), Button, Image, Textfield, Dropdown, Icon, Checkbox-
Radio, Text.

Figure F.5: Model prediction of [img18]
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F.2 Model Predictions

Figure F.6: Model prediction of [img15]
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Figure F.7: Model prediction of [img19]
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F.2 Model Predictions

Figure F.8: Model prediction of [img20] including web browser interface

Figure F.9: Model prediction of [img21]
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Figure F.10: Model prediction of [img22]
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